|
@ -10,7 +10,8 @@ |
|
|
#include "storm/modelchecker/prctl/helper/BaierUpperRewardBoundsComputer.h"
|
|
|
#include "storm/modelchecker/prctl/helper/BaierUpperRewardBoundsComputer.h"
|
|
|
#include "storm/models/sparse/Dtmc.h"
|
|
|
#include "storm/models/sparse/Dtmc.h"
|
|
|
#include "storm/models/sparse/StandardRewardModel.h"
|
|
|
#include "storm/models/sparse/StandardRewardModel.h"
|
|
|
#include "storm/solver/StandardMinMaxLinearEquationSolver.h"
|
|
|
|
|
|
|
|
|
#include "storm/solver/MinMaxLinearEquationSolver.h"
|
|
|
|
|
|
#include "storm/solver/Multiplier.h"
|
|
|
#include "storm/utility/vector.h"
|
|
|
#include "storm/utility/vector.h"
|
|
|
#include "storm/utility/graph.h"
|
|
|
#include "storm/utility/graph.h"
|
|
|
#include "storm/utility/NumberTraits.h"
|
|
|
#include "storm/utility/NumberTraits.h"
|
|
@ -249,49 +250,50 @@ namespace storm { |
|
|
|
|
|
|
|
|
parameterLifter->specifyRegion(region, dirForParameters); |
|
|
parameterLifter->specifyRegion(region, dirForParameters); |
|
|
|
|
|
|
|
|
auto solver = solverFactory->create(env, parameterLifter->getMatrix()); |
|
|
|
|
|
solver->setHasUniqueSolution(); |
|
|
|
|
|
if (lowerResultBound) solver->setLowerBound(lowerResultBound.get()); |
|
|
|
|
|
if (upperResultBound) { |
|
|
|
|
|
solver->setUpperBound(upperResultBound.get()); |
|
|
|
|
|
} else if (solvingRequiresUpperRewardBounds) { |
|
|
|
|
|
// For the min-case, we use DS-MPI, for the max-case variant 2 of the Baier et al. paper (CAV'17).
|
|
|
|
|
|
std::vector<ConstantType> oneStepProbs; |
|
|
|
|
|
oneStepProbs.reserve(parameterLifter->getMatrix().getRowCount()); |
|
|
|
|
|
for (uint64_t row = 0; row < parameterLifter->getMatrix().getRowCount(); ++row) { |
|
|
|
|
|
oneStepProbs.push_back(storm::utility::one<ConstantType>() - parameterLifter->getMatrix().getRowSum(row)); |
|
|
|
|
|
} |
|
|
|
|
|
if (dirForParameters == storm::OptimizationDirection::Minimize) { |
|
|
|
|
|
storm::modelchecker::helper::DsMpiMdpUpperRewardBoundsComputer<ConstantType> dsmpi(parameterLifter->getMatrix(), parameterLifter->getVector(), oneStepProbs); |
|
|
|
|
|
solver->setUpperBounds(dsmpi.computeUpperBounds()); |
|
|
|
|
|
} else { |
|
|
|
|
|
storm::modelchecker::helper::BaierUpperRewardBoundsComputer<ConstantType> baier(parameterLifter->getMatrix(), parameterLifter->getVector(), oneStepProbs); |
|
|
|
|
|
solver->setUpperBound(baier.computeUpperBound()); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
if (!stepBound) solver->setTrackScheduler(true); |
|
|
|
|
|
if (storm::solver::minimize(dirForParameters) && minSchedChoices && !stepBound) solver->setInitialScheduler(std::move(minSchedChoices.get())); |
|
|
|
|
|
if (storm::solver::maximize(dirForParameters) && maxSchedChoices && !stepBound) solver->setInitialScheduler(std::move(maxSchedChoices.get())); |
|
|
|
|
|
if (this->currentCheckTask->isBoundSet() && solver->hasInitialScheduler()) { |
|
|
|
|
|
// If we reach this point, we know that after applying the hint, the x-values can only become larger (if we maximize) or smaller (if we minimize).
|
|
|
|
|
|
std::unique_ptr<storm::solver::TerminationCondition<ConstantType>> termCond; |
|
|
|
|
|
storm::storage::BitVector relevantStatesInSubsystem = this->currentCheckTask->isOnlyInitialStatesRelevantSet() ? this->parametricModel->getInitialStates() % maybeStates : storm::storage::BitVector(maybeStates.getNumberOfSetBits(), true); |
|
|
|
|
|
if (storm::solver::minimize(dirForParameters)) { |
|
|
|
|
|
// Terminate if the value for ALL relevant states is already below the threshold
|
|
|
|
|
|
termCond = std::make_unique<storm::solver::TerminateIfFilteredExtremumBelowThreshold<ConstantType>> (relevantStatesInSubsystem, true, this->currentCheckTask->getBoundThreshold(), false); |
|
|
|
|
|
} else { |
|
|
|
|
|
// Terminate if the value for ALL relevant states is already above the threshold
|
|
|
|
|
|
termCond = std::make_unique<storm::solver::TerminateIfFilteredExtremumExceedsThreshold<ConstantType>> (relevantStatesInSubsystem, true, this->currentCheckTask->getBoundThreshold(), true); |
|
|
|
|
|
} |
|
|
|
|
|
solver->setTerminationCondition(std::move(termCond)); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Invoke the solver
|
|
|
|
|
|
if (stepBound) { |
|
|
if (stepBound) { |
|
|
assert(*stepBound > 0); |
|
|
assert(*stepBound > 0); |
|
|
x = std::vector<ConstantType>(maybeStates.getNumberOfSetBits(), storm::utility::zero<ConstantType>()); |
|
|
x = std::vector<ConstantType>(maybeStates.getNumberOfSetBits(), storm::utility::zero<ConstantType>()); |
|
|
solver->repeatedMultiply(env, dirForParameters, x, ¶meterLifter->getVector(), *stepBound); |
|
|
|
|
|
|
|
|
auto multiplier = storm::solver::MultiplierFactory<ConstantType>().create(); |
|
|
|
|
|
multiplier->repeatedMultiply(env, dirForParameters, x, ¶meterLifter->getVector(), *stepBound); |
|
|
} else { |
|
|
} else { |
|
|
|
|
|
auto solver = solverFactory->create(env, parameterLifter->getMatrix()); |
|
|
|
|
|
solver->setHasUniqueSolution(); |
|
|
|
|
|
if (lowerResultBound) solver->setLowerBound(lowerResultBound.get()); |
|
|
|
|
|
if (upperResultBound) { |
|
|
|
|
|
solver->setUpperBound(upperResultBound.get()); |
|
|
|
|
|
} else if (solvingRequiresUpperRewardBounds) { |
|
|
|
|
|
// For the min-case, we use DS-MPI, for the max-case variant 2 of the Baier et al. paper (CAV'17).
|
|
|
|
|
|
std::vector<ConstantType> oneStepProbs; |
|
|
|
|
|
oneStepProbs.reserve(parameterLifter->getMatrix().getRowCount()); |
|
|
|
|
|
for (uint64_t row = 0; row < parameterLifter->getMatrix().getRowCount(); ++row) { |
|
|
|
|
|
oneStepProbs.push_back(storm::utility::one<ConstantType>() - parameterLifter->getMatrix().getRowSum(row)); |
|
|
|
|
|
} |
|
|
|
|
|
if (dirForParameters == storm::OptimizationDirection::Minimize) { |
|
|
|
|
|
storm::modelchecker::helper::DsMpiMdpUpperRewardBoundsComputer<ConstantType> dsmpi(parameterLifter->getMatrix(), parameterLifter->getVector(), oneStepProbs); |
|
|
|
|
|
solver->setUpperBounds(dsmpi.computeUpperBounds()); |
|
|
|
|
|
} else { |
|
|
|
|
|
storm::modelchecker::helper::BaierUpperRewardBoundsComputer<ConstantType> baier(parameterLifter->getMatrix(), parameterLifter->getVector(), oneStepProbs); |
|
|
|
|
|
solver->setUpperBound(baier.computeUpperBound()); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
solver->setTrackScheduler(true); |
|
|
|
|
|
if (storm::solver::minimize(dirForParameters) && minSchedChoices) solver->setInitialScheduler(std::move(minSchedChoices.get())); |
|
|
|
|
|
if (storm::solver::maximize(dirForParameters) && maxSchedChoices) solver->setInitialScheduler(std::move(maxSchedChoices.get())); |
|
|
|
|
|
if (this->currentCheckTask->isBoundSet() && solver->hasInitialScheduler()) { |
|
|
|
|
|
// If we reach this point, we know that after applying the hint, the x-values can only become larger (if we maximize) or smaller (if we minimize).
|
|
|
|
|
|
std::unique_ptr<storm::solver::TerminationCondition<ConstantType>> termCond; |
|
|
|
|
|
storm::storage::BitVector relevantStatesInSubsystem = this->currentCheckTask->isOnlyInitialStatesRelevantSet() ? this->parametricModel->getInitialStates() % maybeStates : storm::storage::BitVector(maybeStates.getNumberOfSetBits(), true); |
|
|
|
|
|
if (storm::solver::minimize(dirForParameters)) { |
|
|
|
|
|
// Terminate if the value for ALL relevant states is already below the threshold
|
|
|
|
|
|
termCond = std::make_unique<storm::solver::TerminateIfFilteredExtremumBelowThreshold<ConstantType>> (relevantStatesInSubsystem, true, this->currentCheckTask->getBoundThreshold(), false); |
|
|
|
|
|
} else { |
|
|
|
|
|
// Terminate if the value for ALL relevant states is already above the threshold
|
|
|
|
|
|
termCond = std::make_unique<storm::solver::TerminateIfFilteredExtremumExceedsThreshold<ConstantType>> (relevantStatesInSubsystem, true, this->currentCheckTask->getBoundThreshold(), true); |
|
|
|
|
|
} |
|
|
|
|
|
solver->setTerminationCondition(std::move(termCond)); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Invoke the solver
|
|
|
x.resize(maybeStates.getNumberOfSetBits(), storm::utility::zero<ConstantType>()); |
|
|
x.resize(maybeStates.getNumberOfSetBits(), storm::utility::zero<ConstantType>()); |
|
|
solver->solveEquations(env, dirForParameters, x, parameterLifter->getVector()); |
|
|
solver->solveEquations(env, dirForParameters, x, parameterLifter->getVector()); |
|
|
if(storm::solver::minimize(dirForParameters)) { |
|
|
if(storm::solver::minimize(dirForParameters)) { |
|
|