|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void product_extra(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, 1, Dynamic> RowVectorType; typedef Matrix<Scalar, Dynamic, 1> ColVectorType; typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
Index rows = m.rows(); Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); OtherMajorMatrixType tm1 = m1;
Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>();
VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint() * s1).eval() * (s3 * m2).eval()); VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(), (-m1*s2).eval() * (s1*m2.adjoint()).eval());
// a very tricky case where a scale factor has to be automatically conjugated:
VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
// test all possible conjugate combinations for the four matrix-vector product cases:
VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
// test the vector-matrix product with non aligned starts
Index i = internal::random<Index>(0,m1.rows()-2); Index j = internal::random<Index>(0,m1.cols()-2); Index r = internal::random<Index>(1,m1.rows()-i); Index c = internal::random<Index>(1,m1.cols()-j); Index i2 = internal::random<Index>(0,m1.rows()-1); Index j2 = internal::random<Index>(0,m1.cols()-1);
VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); // regression test
MatrixType tmp = m1 * m1.adjoint() * s1; VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); }
// Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947
void mat_mat_scalar_scalar_product() { StormEigen::Matrix2Xd dNdxy(2, 3); dNdxy << -0.5, 0.5, 0, -0.3, 0, 0.3; double det = 6.0, wt = 0.5; VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy); }
template <typename MatrixType> void zero_sized_objects(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; const int PacketSize = internal::packet_traits<Scalar>::size; const int PacketSize1 = PacketSize>1 ? PacketSize-1 : 1; Index rows = m.rows(); Index cols = m.cols(); { MatrixType res, a(rows,0), b(0,cols); VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) ); VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) ); VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) ); VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) ); } { MatrixType res, a(rows,cols), b(cols,0); res = a*b; VERIFY(res.rows()==rows && res.cols()==0); b.resize(0,rows); res = b*a; VERIFY(res.rows()==0 && res.cols()==cols); } { Matrix<Scalar,PacketSize,0> a; Matrix<Scalar,0,1> b; Matrix<Scalar,PacketSize,1> res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) ); } { Matrix<Scalar,PacketSize1,0> a; Matrix<Scalar,0,1> b; Matrix<Scalar,PacketSize1,1> res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) ); } { Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0); Matrix<Scalar,Dynamic,1> b(0,1); Matrix<Scalar,PacketSize,1> res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) ); } { Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0); Matrix<Scalar,Dynamic,1> b(0,1); Matrix<Scalar,PacketSize1,1> res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) ); } }
template<int> void bug_127() { // Bug 127
//
// a product of the form lhs*rhs with
//
// lhs:
// rows = 1, cols = 4
// RowsAtCompileTime = 1, ColsAtCompileTime = -1
// MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5
//
// rhs:
// rows = 4, cols = 0
// RowsAtCompileTime = -1, ColsAtCompileTime = -1
// MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1
//
// was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the
// max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1.
Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4); Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0); a*b; }
template<int> void bug_817() { ArrayXXf B = ArrayXXf::Random(10,10), C; VectorXf x = VectorXf::Random(10); C = (x.transpose()*B.matrix()); B = (x.transpose()*B.matrix()); VERIFY_IS_APPROX(B,C); }
template<int> void unaligned_objects() { // Regression test for the bug reported here:
// http://forum.kde.org/viewtopic.php?f=74&t=107541
// Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then.
// There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases,
// memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault.
for(int m=450;m<460;++m) { for(int n=8;n<12;++n) { MatrixXf M(m, n); VectorXf v1(n), r1(500); RowVectorXf v2(m), r2(16);
M.setRandom(); v1.setRandom(); v2.setRandom(); for(int o=0; o<4; ++o) { r1.segment(o,m).noalias() = M * v1; VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1)); r2.segment(o,n).noalias() = v2 * M; VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M); } } } }
template<typename T> EIGEN_DONT_INLINE Index test_compute_block_size(Index m, Index n, Index k) { Index mc(m), nc(n), kc(k); internal::computeProductBlockingSizes<T,T>(kc, mc, nc); return kc+mc+nc; }
template<typename T> Index compute_block_size() { Index ret = 0; ret += test_compute_block_size<T>(0,1,1); ret += test_compute_block_size<T>(1,0,1); ret += test_compute_block_size<T>(1,1,0); ret += test_compute_block_size<T>(0,0,1); ret += test_compute_block_size<T>(0,1,0); ret += test_compute_block_size<T>(1,0,0); ret += test_compute_block_size<T>(0,0,0); return ret; }
void test_product_extra() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( mat_mat_scalar_scalar_product() ); CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); } CALL_SUBTEST_5( bug_127<0>() ); CALL_SUBTEST_5( bug_817<0>() ); CALL_SUBTEST_6( unaligned_objects<0>() ); CALL_SUBTEST_7( compute_block_size<float>() ); CALL_SUBTEST_7( compute_block_size<double>() ); CALL_SUBTEST_7( compute_block_size<std::complex<double> >() ); }
|