// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void product_extra(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef Matrix RowVectorType; typedef Matrix ColVectorType; typedef Matrix OtherMajorMatrixType; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); OtherMajorMatrixType tm1 = m1; Scalar s1 = internal::random(), s2 = internal::random(), s3 = internal::random(); VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint() * s1).eval() * (s3 * m2).eval()); VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(), (-m1*s2).eval() * (s1*m2.adjoint()).eval()); // a very tricky case where a scale factor has to be automatically conjugated: VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); // test all possible conjugate combinations for the four matrix-vector product cases: VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); // test the vector-matrix product with non aligned starts Index i = internal::random(0,m1.rows()-2); Index j = internal::random(0,m1.cols()-2); Index r = internal::random(1,m1.rows()-i); Index c = internal::random(1,m1.cols()-j); Index i2 = internal::random(0,m1.rows()-1); Index j2 = internal::random(0,m1.cols()-1); VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); // regression test MatrixType tmp = m1 * m1.adjoint() * s1; VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); } // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947 void mat_mat_scalar_scalar_product() { StormEigen::Matrix2Xd dNdxy(2, 3); dNdxy << -0.5, 0.5, 0, -0.3, 0, 0.3; double det = 6.0, wt = 0.5; VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy); } template void zero_sized_objects(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; const int PacketSize = internal::packet_traits::size; const int PacketSize1 = PacketSize>1 ? PacketSize-1 : 1; Index rows = m.rows(); Index cols = m.cols(); { MatrixType res, a(rows,0), b(0,cols); VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) ); VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) ); VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) ); VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) ); } { MatrixType res, a(rows,cols), b(cols,0); res = a*b; VERIFY(res.rows()==rows && res.cols()==0); b.resize(0,rows); res = b*a; VERIFY(res.rows()==0 && res.cols()==cols); } { Matrix a; Matrix b; Matrix res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) ); } { Matrix a; Matrix b; Matrix res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) ); } { Matrix a(PacketSize,0); Matrix b(0,1); Matrix res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) ); } { Matrix a(PacketSize1,0); Matrix b(0,1); Matrix res; VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) ); VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) ); } } template void bug_127() { // Bug 127 // // a product of the form lhs*rhs with // // lhs: // rows = 1, cols = 4 // RowsAtCompileTime = 1, ColsAtCompileTime = -1 // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5 // // rhs: // rows = 4, cols = 0 // RowsAtCompileTime = -1, ColsAtCompileTime = -1 // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1 // // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1. Matrix a(1,4); Matrix b(4,0); a*b; } template void bug_817() { ArrayXXf B = ArrayXXf::Random(10,10), C; VectorXf x = VectorXf::Random(10); C = (x.transpose()*B.matrix()); B = (x.transpose()*B.matrix()); VERIFY_IS_APPROX(B,C); } template void unaligned_objects() { // Regression test for the bug reported here: // http://forum.kde.org/viewtopic.php?f=74&t=107541 // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then. // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases, // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault. for(int m=450;m<460;++m) { for(int n=8;n<12;++n) { MatrixXf M(m, n); VectorXf v1(n), r1(500); RowVectorXf v2(m), r2(16); M.setRandom(); v1.setRandom(); v2.setRandom(); for(int o=0; o<4; ++o) { r1.segment(o,m).noalias() = M * v1; VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1)); r2.segment(o,n).noalias() = v2 * M; VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M); } } } } template EIGEN_DONT_INLINE Index test_compute_block_size(Index m, Index n, Index k) { Index mc(m), nc(n), kc(k); internal::computeProductBlockingSizes(kc, mc, nc); return kc+mc+nc; } template Index compute_block_size() { Index ret = 0; ret += test_compute_block_size(0,1,1); ret += test_compute_block_size(1,0,1); ret += test_compute_block_size(1,1,0); ret += test_compute_block_size(0,0,1); ret += test_compute_block_size(0,1,0); ret += test_compute_block_size(1,0,0); ret += test_compute_block_size(0,0,0); return ret; } void test_product_extra() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( product_extra(MatrixXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( product_extra(MatrixXd(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( mat_mat_scalar_scalar_product() ); CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random(1,EIGEN_TEST_MAX_SIZE/2), internal::random(1,EIGEN_TEST_MAX_SIZE/2))) ); CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random(1,EIGEN_TEST_MAX_SIZE/2), internal::random(1,EIGEN_TEST_MAX_SIZE/2))) ); CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } CALL_SUBTEST_5( bug_127<0>() ); CALL_SUBTEST_5( bug_817<0>() ); CALL_SUBTEST_6( unaligned_objects<0>() ); CALL_SUBTEST_7( compute_block_size() ); CALL_SUBTEST_7( compute_block_size() ); CALL_SUBTEST_7( compute_block_size >() ); }