|
|
// Small bench routine for Eigen available in Eigen
// (C) Desire NUENTSA WAKAM, INRIA
#include <iostream>
#include <fstream>
#include <iomanip>
#include <unsupported/StormEigen/SparseExtra>
#include <StormEigen/SparseLU>
#include <bench/BenchTimer.h>
#ifdef STORMEIGEN_METIS_SUPPORT
#include <StormEigen/MetisSupport>
#endif
using namespace std; using namespace StormEigen;
int main(int argc, char **args) { // typedef complex<double> scalar;
typedef double scalar; SparseMatrix<scalar, ColMajor> A; typedef SparseMatrix<scalar, ColMajor>::Index Index; typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix; typedef Matrix<scalar, Dynamic, 1> DenseRhs; Matrix<scalar, Dynamic, 1> b, x, tmp; // SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver;
// #ifdef STORMEIGEN_METIS_SUPPORT
// SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver;
// std::cout<< "ORDERING : METIS\n";
// #else
SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver; std::cout<< "ORDERING : COLAMD\n"; // #endif
ifstream matrix_file; string line; int n; BenchTimer timer; // Set parameters
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ if (argc < 2) assert(false && "please, give the matrix market file "); loadMarket(A, args[1]); cout << "End charging matrix " << endl; bool iscomplex=false, isvector=false; int sym; getMarketHeader(args[1], sym, iscomplex, isvector); // if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;} if (sym != 0) { // symmetric matrices, only the lower part is stored
SparseMatrix<scalar, ColMajor> temp; temp = A; A = temp.selfadjointView<Lower>(); } n = A.cols(); /* Fill the right hand side */
if (argc > 2) loadMarketVector(b, args[2]); else { b.resize(n); tmp.resize(n); // tmp.setRandom();
for (int i = 0; i < n; i++) tmp(i) = i; b = A * tmp ; }
/* Compute the factorization */ // solver.isSymmetric(true);
timer.start(); // solver.compute(A);
solver.analyzePattern(A); timer.stop(); cout << "Time to analyze " << timer.value() << std::endl; timer.reset(); timer.start(); solver.factorize(A); timer.stop(); cout << "Factorize Time " << timer.value() << std::endl; timer.reset(); timer.start(); x = solver.solve(b); timer.stop(); cout << "solve time " << timer.value() << std::endl; /* Check the accuracy */ Matrix<scalar, Dynamic, 1> tmp2 = b - A*x; scalar tempNorm = tmp2.norm()/b.norm(); cout << "Relative norm of the computed solution : " << tempNorm <<"\n"; cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl; return 0; }
|