// Small bench routine for Eigen available in Eigen // (C) Desire NUENTSA WAKAM, INRIA #include #include #include #include #include #include #ifdef STORMEIGEN_METIS_SUPPORT #include #endif using namespace std; using namespace StormEigen; int main(int argc, char **args) { // typedef complex scalar; typedef double scalar; SparseMatrix A; typedef SparseMatrix::Index Index; typedef Matrix DenseMatrix; typedef Matrix DenseRhs; Matrix b, x, tmp; // SparseLU, AMDOrdering > solver; // #ifdef STORMEIGEN_METIS_SUPPORT // SparseLU, MetisOrdering > solver; // std::cout<< "ORDERING : METIS\n"; // #else SparseLU, COLAMDOrdering > solver; std::cout<< "ORDERING : COLAMD\n"; // #endif ifstream matrix_file; string line; int n; BenchTimer timer; // Set parameters /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ if (argc < 2) assert(false && "please, give the matrix market file "); loadMarket(A, args[1]); cout << "End charging matrix " << endl; bool iscomplex=false, isvector=false; int sym; getMarketHeader(args[1], sym, iscomplex, isvector); // if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; } if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;} if (sym != 0) { // symmetric matrices, only the lower part is stored SparseMatrix temp; temp = A; A = temp.selfadjointView(); } n = A.cols(); /* Fill the right hand side */ if (argc > 2) loadMarketVector(b, args[2]); else { b.resize(n); tmp.resize(n); // tmp.setRandom(); for (int i = 0; i < n; i++) tmp(i) = i; b = A * tmp ; } /* Compute the factorization */ // solver.isSymmetric(true); timer.start(); // solver.compute(A); solver.analyzePattern(A); timer.stop(); cout << "Time to analyze " << timer.value() << std::endl; timer.reset(); timer.start(); solver.factorize(A); timer.stop(); cout << "Factorize Time " << timer.value() << std::endl; timer.reset(); timer.start(); x = solver.solve(b); timer.stop(); cout << "solve time " << timer.value() << std::endl; /* Check the accuracy */ Matrix tmp2 = b - A*x; scalar tempNorm = tmp2.norm()/b.norm(); cout << "Relative norm of the computed solution : " << tempNorm <<"\n"; cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl; return 0; }