Browse Source

added example Z3 scripts

main
Stefan Pranger 3 years ago
parent
commit
95f388b5ce
  1. 37
      farm_animals/bare.py
  2. 59
      farm_animals/final.py
  3. 45
      farm_animals/version1.py
  4. 48
      farm_animals/version2.py
  5. 46
      password_cracking/password_cracker.py
  6. 38
      password_cracking/password_storage.sh

37
farm_animals/bare.py

@ -0,0 +1,37 @@
# coding: utf-8
import os, sys
from z3 import *
# No need to parse anything for this example
#################################### Farm Animals ####################################
solver = Solver()
# We have 100€ ( == 10000c) and we want to buy **exactly** 100 animals, where
# price(cow) = 10€
# price(chicken) = 3€
# price(mouse) = 25c
# todo
# Create Z3 variables which hold the number of animals and the price respectively
# todo
# Create Z3 variables which hold the amount of the different animals our farmes is going to buy
# todo
# Add constraints which model our real life requirements
# Check for satisfiability
res = solver.check()
if res != sat:
print("unsat")
sys.exit(1)
################################################################################
# print the model
# get the model
m = solver.model()
# print all Z3 variables which have an assignment in the model
for d in m.decls():
print("%s = %s" % (d.name(), m[d]))
################################################################################

59
farm_animals/final.py

@ -0,0 +1,59 @@
# coding: utf-8
import os, sys
from z3 import *
# No need to parse anything for this example
#################################### Farm Animals ####################################
solver = Solver()
# todo
# Create Z3 variables which hold the number of animals and the price respectively
amount_of_animals = Int("amount_of_animals")
total_price = Int("total_price")
target_price = 10000
target_amount = 100
# todo
# Create Z3 variables which hold the amount of the different animals our farmes is going to buy
cows = Int("cows")
mice = Int("mice")
chicken = Int("chicken")
# todo
# Add constraints which model our real life requirements
solver.add(cows + chicken + mice == amount_of_animals)
solver.add(cows * 1000 + chicken * 300 + mice * 25 == total_price)
solver.add(total_price == target_price)
solver.add(amount_of_animals == target_amount)
# Done?
solver.add(cows > 1)
solver.add(chicken > 1)
solver.add(mice > 1)
print(solver.sexpr())
# Check for satisfiability
res = solver.check()
if res != sat:
print("unsat")
sys.exit(1)
################################################################################
# print the model
# get the model
m = solver.model()
# print all Z3 variables which have an assignment in the model
result = str(m[cows]) + " cows and "
result += str(m[chicken]) + " chicken and "
result += str(m[mice]) + " mice -> "
print(result)
print(m[cows].as_long() * 10 + m[chicken].as_long() * 3 + m[mice].as_long() * 0.25)
solver.add(mice != m[mice])
res = solver.check()
if res != sat:
print("unsat")
sys.exit(1)
################################################################################

45
farm_animals/version1.py

@ -0,0 +1,45 @@
# coding: utf-8
import os, sys
from z3 import *
# No need to parse anything for this example
#################################### Farm Animals ####################################
solver = Solver()
# todo
# Create Z3 variables which hold the number of animals and the price respectively
amount_of_animals = Int("amount_of_animals")
total_price = Int("total_price")
target_price = 10000
target_amount = 100
# todo
# Create Z3 variables which hold the amount of the different animals our farmes is going to buy
cows = Int("cows")
mice = Int("mice")
chicken = Int("chicken")
# todo
# Add constraints which model our real life requirements
solver.add(cows + chicken + mice == amount_of_animals)
solver.add(cows * 1000 + chicken * 300 + mice * 25 == total_price)
solver.add(total_price == target_price)
solver.add(amount_of_animals == target_amount)
# Done?
# Check for satisfiability
res = solver.check()
if res != sat:
print("unsat")
sys.exit(1)
################################################################################
# print the model
# get the model
m = solver.model()
# print all Z3 variables which have an assignment in the model
for d in m.decls():
print("%s = %s" % (d.name(), m[d]))
################################################################################

48
farm_animals/version2.py

@ -0,0 +1,48 @@
# coding: utf-8
import os, sys
from z3 import *
# No need to parse anything for this example
#################################### Farm Animals ####################################
solver = Solver()
# todo
# Create Z3 variables which hold the number of animals and the price respectively
amount_of_animals = Int("amount_of_animals")
total_price = Int("total_price")
target_price = 10000
target_amount = 100
# todo
# Create Z3 variables which hold the amount of the different animals our farmes is going to buy
cows = Int("cows")
mice = Int("mice")
chicken = Int("chicken")
# todo
# Add constraints which model our real life requirements
solver.add(cows + chicken + mice == amount_of_animals)
solver.add(cows * 1000 + chicken * 300 + mice * 25 == total_price)
solver.add(total_price == target_price)
solver.add(amount_of_animals == target_amount)
# Done?
solver.add(cows > 1)
solver.add(chicken > 1)
solver.add(mice > 1)
# Check for satisfiability
res = solver.check()
if res != sat:
print("unsat")
sys.exit(1)
################################################################################
# print the model
# get the model
m = solver.model()
# print all Z3 variables which have an assignment in the model
for d in m.decls():
print("%s = %s" % (d.name(), m[d]))
################################################################################

46
password_cracking/password_cracker.py

@ -0,0 +1,46 @@
# coding: utf-8
import os, sys
from z3 import *
# 'hashed' password we have from the 'binary'
hashed_password=168372036536695091
# we are going to try different lengths of passwords
for password_length in range(5,15):
# init solver, this will wipe any residual constraints in each loop
solver = Solver()
# initialize constraints for each character of the password
# we are only going to allow ascii values from 'a' to 'z'
chars = [Int(c) for c in range(password_length)]
# initialization value
n = 7
# the 'hashing' algorithm we have extracted from the binary
for c in chars:
# this essentially extends the symbolic constraints associated with each 'c'
n = n * 27 + c * 5
# the solver should return sat iff
# the hashed input is equal the hashed_password
solver.add(n == hashed_password)
for c in chars:
# each 'c' should be a lowercase ascii character
solver.add(And(c >= ord('a'),
c <= ord('z')))
res = solver.check()
if res != sat:
print("No possible password found...")
continue
# print the model/password found
m = solver.model()
for d in m.decls():
print("%s = %s -> %c" % (d.name(), m[d], chr(m[d].as_long())))
password = ''.join(chr(m[c].as_long()) for c in chars)
print("Trying '" + password + "' as password")
os.system("./password_storage.sh {}".format(password))

38
password_cracking/password_storage.sh

@ -0,0 +1,38 @@
#!/usr/bin/env bash
# return password to password storage shell
get_password() {
printf 'secret'
}
# initialization value
n=7
# 'hashed' password
hashed_password=168372036536695091
# read password as parameter ...
password=$1
# ... or ask for password
[ -z $1 ] && printf "Enter password:\n" && read -s password
# 'hash' the password with some random multiplications
for (( i=0; i<${#password}; i++ )); do
charval=$(printf "%d\n" \'${password:$i:1}) # ascii value of the current character
n=$(echo "$n * 27 + $charval * 5" | bc) # do some computations and assign to intermediate result
done
# check if hash of entered password is equal to 'hashed' password
if [[ $n -eq $hashed_password ]]; then
# if yes then grant access to prompt
while true; do
printf "\n$(whoami)'s password storage> "
read pass
get_password
done
exit 0
else
# else exit with error code
printf "\nWrong password."
exit 1
fi
Loading…
Cancel
Save