Browse Source

- Rearranged break-even points to better match present-day CPUs whenever

GMP3 is used.
master
Richard Kreckel 25 years ago
parent
commit
e7eb602118
  1. 98
      src/base/digitseq/cl_DS_div.cc
  2. 232
      src/base/digitseq/cl_DS_mul.cc

98
src/base/digitseq/cl_DS_div.cc

@ -12,33 +12,75 @@
#include "cl_N.h" #include "cl_N.h"
#include "cl_abort.h" #include "cl_abort.h"
// We observe the following timings:
// Time for dividing 2*N digits by N digits, on a i486 33 MHz running Linux:
// N standard Newton
// 10 0.0003 0.0012
// 25 0.0013 0.0044
// 50 0.0047 0.0125
// 100 0.017 0.037
// 250 0.108 0.146
// 500 0.43 0.44
// 1000 1.72 1.32
// 2500 11.2 4.1
// 5000 44.3 9.5
// 10000 187 20.6
// -----> Newton faster for N >= 550.
// Time for dividing 3*N digits by N digits, on a i486 33 MHz running Linux:
// N standard Newton
// 10 0.0006 0.0025
// 25 0.0026 0.0103
// 50 0.0092 0.030
// 100 0.035 0.089
// 250 0.215 0.362
// 500 0.85 1.10
// 1000 3.44 3.21
// 2500 23.3 7.9
// 5000 89.0 15.6
// 10000 362 33.1
// -----> Newton faster for N >= 740.
// We observe the following timings in seconds:
// Time for dividing a 2*n word number by a n word number:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// n standard Newton standard Newton
// 10 0.000010 0.000024 0.000036 0.000058
// 30 0.000026 0.000080 0.00012 0.00027
// 100 0.00018 0.00048 0.00084 0.0016
// 300 0.0013 0.0028 0.0062 0.0090
// 1000 0.014 0.019 0.064 0.066 <-(~2200)
// 2000 0.058 0.058 <-(~2000) 0.26 0.20
// 3000 0.20 0.11 0.57 0.24
// 10000 2.3 0.50 6.7 1.2
// 30000 24.4 1.2 62.0 2.8
// Time for dividing a 3*n word number by a n word number:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// n standard Newton standard Newton
// 10 0.000013 0.000040 0.000063 0.00011
// 30 0.000046 0.00018 0.00024 0.00062
// 100 0.00035 0.0012 0.0016 0.0040
// 300 0.0027 0.0071 0.012 0.021
// 1000 0.029 0.047 0.13 0.16
// 2000 0.12 0.14 <-(~2200) 0.51 0.45 <-(~1600)
// 3000 0.40 0.22 1.1 0.52
// 10000 4.5 0.76 13.2 2.0
// 30000 42.0 2.8 123.0 6.0
// Time for dividing m digits by n digits:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// n Newton faster for: Newton faster for:
// 2-400 never never
// 600 never 670<m<900 (definitly negligible)
// 800 never 850<m<1500
// 1000 never 1030<m<2000
// 1200 1400<m<1700 1230<m<2700
// 1500 1590<m<2500 1530<m<5100, 6600<m (ridge negligible)
// 2000 2060<m<3600 2030<m
// 3000 3040<m 3030<m
// 4000 4030<m 4030<m
// 5000 5030<m 5030<m
// 8000 8030<m 8030<m
// Break-even-point, should be acceptable for both architectures.
// When in doubt, prefer to choose the standard algorithm.
#if CL_USE_GMP
static inline cl_boolean cl_recip_suitable (uintL m, uintL n) // m > n
{ if (n < 900)
return cl_false;
else
if (n < 2200)
return (cl_boolean)((m >= n+50) && (m < 2*n-600));
else
return (cl_boolean)(m >= n+30);
}
#else
// Use the old default values from CLN version <= 1.0.3 as a crude estimate.
// They came from the timings for dividing m digits by n digits on an i486/33:
// Dividing 2*N digits by N digits: Dividing 3*N digits by N digits:
// N standard Newton standard Newton
// 10 0.0003 0.0012 0.0006 0.0025
// 25 0.0013 0.0044 0.0026 0.0103
// 50 0.0047 0.0125 0.0092 0.030
// 100 0.017 0.037 0.035 0.089
// 250 0.108 0.146 0.215 0.362
// 500 0.43 0.44 <-(~550) 0.85 1.10
// 1000 1.72 1.32 3.44 3.21 <-(~740)
// 2500 11.2 4.1 23.3 7.9
// 5000 44.3 9.5 89.0 15.6
// 10000 187 20.6 362 33.1
// Time for dividing m digits by n digits: // Time for dividing m digits by n digits:
// n = 2,3,5,10,25,50,100,250: Newton never faster. // n = 2,3,5,10,25,50,100,250: Newton never faster.
// n = 400: Newton faster for m >= 440, m < 600 // n = 400: Newton faster for m >= 440, m < 600
@ -52,7 +94,6 @@
// n = 2000: Newton faster for m >= 2020 // n = 2000: Newton faster for m >= 2020
// n = 2500: Newton faster for m >= 2520 // n = 2500: Newton faster for m >= 2520
// n = 5000: Newton faster for m >= 5020 // n = 5000: Newton faster for m >= 5020
// Break-even-point. When in doubt, prefer to choose the standard algorithm.
static inline cl_boolean cl_recip_suitable (uintL m, uintL n) // m > n static inline cl_boolean cl_recip_suitable (uintL m, uintL n) // m > n
{ if (n < 500) { if (n < 500)
return cl_false; return cl_false;
@ -62,6 +103,7 @@
else else
return (cl_boolean)(m >= n+20); return (cl_boolean)(m >= n+20);
} }
#endif
// Dividiert zwei Unsigned Digit sequences durcheinander. // Dividiert zwei Unsigned Digit sequences durcheinander.
// UDS_divide(a_MSDptr,a_len,a_LSDptr, b_MSDptr,b_len,b_LSDptr, &q,&r); // UDS_divide(a_MSDptr,a_len,a_LSDptr, b_MSDptr,b_len,b_LSDptr, &q,&r);

232
src/base/digitseq/cl_DS_mul.cc

@ -119,55 +119,55 @@
} while (len > 0); } while (len > 0);
} }
// Karatsuba-Multiplikation: O(n^(log 3 / log 2))
// Karatsuba-multiplication: O(n^(log 3 / log 2))
static void mulu_karatsuba (const uintD* sourceptr1, uintC len1, static void mulu_karatsuba (const uintD* sourceptr1, uintC len1,
const uintD* sourceptr2, uintC len2, const uintD* sourceptr2, uintC len2,
uintD* destptr); uintD* destptr);
static void mulu_karatsuba_square (const uintD* sourceptr, uintC len, static void mulu_karatsuba_square (const uintD* sourceptr, uintC len,
uintD* destptr); uintD* destptr);
#include "cl_DS_mul_kara.h" #include "cl_DS_mul_kara.h"
// karatsuba_threshold = Länge, ab der die Karatsuba-Multiplikation bevorzugt
// wird. Der Break-Even-Point bestimmt sich aus Zeitmessungen.
// Als Test dient (progn (time (! 5000)) nil), das viele kleine und einige
// ganz große Multiplikationen durchführt. Miß die Runtime.
// Unter Linux mit einem 80486: Auf einer Sparc 2:
// threshold time in 0.01 sec.
// 5 125 127
// 6 116 117
// 7 107 110
// 8 101 103
// 9 99 102
// 10 98 100
// 11 97 100
// 12 96 99
// 13 97 99
// 14 97 100
// 15 97 99
// 16 98 100
// 17 98 100
// 18 98 100
// 19 98 101
// 20 99 102
// 25 103 105
// 30 109 111
// 40 115 118
// 50 122 125
// 70 132 134
// 100 151 152
// 150 164 167
// 250 183 187
// 500 203 205
// 1000 203 205
// (clisp)(cln)
// Das Optimum scheint bei karatsuba_threshold = 12 zu liegen.
// Da das Optimum aber vom Verhältnis
// Zeit für uintD-Multiplikation / Zeit für uintD-Addition
// abhängt und die gemessenen Zeiten auf eine Unterschreitung des Optimums
// empfindlicher reagieren als auf eine Überschreitung des Optimums,
// sind wir vorsichtig und wählen einen Wert etwas über dem Optimum:
// karatsuba_threshold = length, from which on Karatsuba-multiplication is a
// gain and will be preferred. The break-even point is determined from
// timings. The test is (progn (time (! 5000)) nil), which does many small
// and some very large multiplications. The measured runtimes are:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// threshold time in 0.01 sec. time in 0.01 sec.
// 5 3.55 2.29
// 10 2.01 1.71
// 15 1.61 1.61
// 20 1.51 1.60 <-
// 25 1.45 1.63
// 30 1.39 1.66
// 35 1.39 <- 1.67
// 40 1.39 1.71
// 45 1.40 1.75
// 50 1.41 1.78
// 55 1.41 1.79
// 60 1.44 1.84
// 65 1.44 1.85
// 70 1.43 1.85
// 75 1.45 1.89
// 80 1.47 1.91
// 90 1.51 1.96
// 100 1.53 1.97
// 150 1.62 2.13
// 250 1.75 2.19
// 500 1.87 2.17
// 1000 1.87 2.18
// 2000 1.88 2.17
// The optimum appears to be between 20 and 40. But since that optimum
// depends on the ratio time(uintD-mul)/time(uintD-add) and the measured
// times are more sensitive to a shift towards lower thresholds we are
// careful and choose a value at the upper end:
#if CL_USE_GMP
const unsigned int cl_karatsuba_threshold = 35;
#else
const unsigned int cl_karatsuba_threshold = 16; const unsigned int cl_karatsuba_threshold = 16;
// (In CLN version <= 1.0.3 cl_karatsuba_threshold was always 16)
#endif
#if 0 // Lohnt sich nicht
#if 0 // Doesn't seem to be worth the effort
// FFT-Multiplikation nach Nussbaumer: O(n log n log log n) // FFT-Multiplikation nach Nussbaumer: O(n log n log log n)
#include "cl_DS_mul_nuss.h" #include "cl_DS_mul_nuss.h"
@ -246,58 +246,112 @@
// FFT-Multiplikation in Z/pZ: O(n^1.29) // FFT-Multiplikation in Z/pZ: O(n^1.29)
#include "cl_DS_mul_fftm.h" #include "cl_DS_mul_fftm.h"
// fftm_threshold = Länge, ab der die FFT-Multiplikation mod m bevorzugt
// wird. Der Break-Even-Point bestimmt sich aus Zeitmessungen.
// Multiplikation zweier N-Wort-Zahlen unter
// Linux mit einem 80486: Solaris, Sparc 10/20:
// fftm_threshold = length, from which on FFT multiplication mod m is a gain
// and will be preferred. The break-even point is determined from timings.
// The times to multiply two N-limb numbers are:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// N kara fftm (time in sec.) kara fftm // N kara fftm (time in sec.) kara fftm
// 1000 0.36 0.54 0.08 0.10
// 5000 4.66 2.48 1.01 0.51
// 25000 61.1 13.22 13.23 2.73
// 32500 91.0 27.5 20.0 5.8
// 35000 102.1 27.5 21.5 5.6
// 50000 183 27.6 40.7 5.6
// Multiplikation zweier N-Wort-Zahlen unter
// Linux mit einem 80486: Solaris, Sparc 10/20:
// N kara fftm (time in sec.) kara fftm
// 1000 0.36 0.54 0.08 0.10
// 1260 0.52 0.50 0.11 0.10
// 1590 0.79 0.51 0.16 0.10
// 2000 1.09 1.07 0.23 0.21
// 2520 1.57 1.08 0.33 0.21
// 3180 2.32 1.08 0.50 0.21
// 4000 3.29 2.22 0.70 0.41
// 5040 4.74 2.44 0.99 0.50
// N1 N2 kara fftm (time in sec.) kara fftm
// 1250 1250 0.51 0.50 0.11 0.10
// 1250 1580 0.70 0.50 0.15 0.10
// 1250 2000 0.89 0.51 0.18 0.10
// 1250 2250 0.99 0.51 0.21 0.10
// 1250 2500 1.08 1.03 <--- 0.22 0.21
// 1250 2800 1.20 1.07 0.26 0.21
// 1250 3100 1.35 1.07 0.28 0.21
// Es gibt also noch Werte von (len1,len2) mit 1250 <= len1 <= len2, bei
// denen "kara" schneller ist als "fftm", aber nicht viele und dort auch
// nur um 5%. Darum wählen wir ab hier die FFT-Multiplikation.
const unsigned int cl_fftm_threshold = 1250; // muß stets >= 6 sein (sonst Endlosrekursion!)
// 1000 0.005 0.016 0.018 0.028
// 1500 0.009 0.012 0.032 0.028
// 2000 0.015 0.025 0.053 0.052 <-
// 2500 0.022 0.026 0.067 0.052
// 3000 0.029 0.027 <- 0.093 0.053
// 3500 0.035 0.037 0.12 0.031
// 4000 0.045 0.028 0.16 0.12
// 5000 0.064 0.050 0.20 0.11
// 7000 0.110 0.051 0.37 0.20
// 10000 0.19 0.11 0.61 0.26
// 20000 0.59 0.23 1.85 0.55
// 30000 1.10 0.25 3.79 0.56
// 50000 2.52 1.76 8.15 1.37
// 70000 4.41 2.30 14.09 2.94
// 100000 7.55 1.53 24.48 2.96
// More playing around with timings reveals that there are some values where
// FFT multiplication is somewhat slower than Karatsuba, both for len1==len2
// and also if len1<len2.
// Here are the timigs from CLN version <= 1.0.3:
// // Linux mit einem 80486: Solaris, Sparc 10/20:
// // N kara fftm (time in sec.) kara fftm
// // 1000 0.36 0.54 0.08 0.10
// // 5000 4.66 2.48 1.01 0.51
// // 25000 61.1 13.22 13.23 2.73
// // 32500 91.0 27.5 20.0 5.8
// // 35000 102.1 27.5 21.5 5.6
// // 50000 183 27.6 40.7 5.6
// // Multiplikation zweier N-Wort-Zahlen unter
// // Linux mit einem 80486: Solaris, Sparc 10/20:
// // N kara fftm (time in sec.) kara fftm
// // 1000 0.36 0.54 0.08 0.10
// // 1260 0.52 0.50 0.11 0.10
// // 1590 0.79 0.51 0.16 0.10
// // 2000 1.09 1.07 0.23 0.21
// // 2520 1.57 1.08 0.33 0.21
// // 3180 2.32 1.08 0.50 0.21
// // 4000 3.29 2.22 0.70 0.41
// // 5040 4.74 2.44 0.99 0.50
// // N1 N2 kara fftm (time in sec.) kara fftm
// // 1250 1250 0.51 0.50 0.11 0.10
// // 1250 1580 0.70 0.50 0.15 0.10
// // 1250 2000 0.89 0.51 0.18 0.10
// // 1250 2250 0.99 0.51 0.21 0.10
// // 1250 2500 1.08 1.03 <--- 0.22 0.21
// // 1250 2800 1.20 1.07 0.26 0.21
// // 1250 3100 1.35 1.07 0.28 0.21
// // Es gibt also noch Werte von (len1,len2) mit 1250 <= len1 <= len2, bei
// // denen "kara" schneller ist als "fftm", aber nicht viele und dort auch
// // nur um 5%. Darum wählen wir ab hier die FFT-Multiplikation.
// // 140000: 4.15s 12.53 23.7
// // 14000: 4.16s
// // 11000: 4.16s
// // 9000: 1.47s
// // 7000: 1.48s
// // 1400: 1.42s 2.80 6.5
#if CL_USE_GMP
const unsigned int cl_fftm_threshold = 2500;
// must be >= 6 (else infinite recursion)
#else
// Use the old default value from CLN version <= 1.0.3 as a crude estimate.
const unsigned int cl_fftm_threshold = 1250;
#endif
// This is the threshold for multiplication of equally sized factors. // This is the threshold for multiplication of equally sized factors.
// When the lengths differ much, the threshold varies: // When the lengths differ much, the threshold varies:
// len2 = 3000 len1 >= 800
// len2 = 3500 len1 >= 700
// len2 = 4000 len1 >= 580
// len2 = 4500 len1 >= 430
// len2 = 5000 len1 >= 370
// len2 = 5500 len1 >= 320
// len2 = 6000 len1 >= 500
// len2 = 7000 len1 >= 370
// len2 = 8000 len1 >= 330
// len2 = 9000 len1 >= 420
// len2 =10000 len1 >= 370
// len2 =11000 len1 >= 330
// len2 =12000 len1 >= 330
// len2 =13000 len1 >= 350
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// len2 = 3000 len1 >= 2600 len1 >= 800
// len2 = 4000 len1 >= 1500 len1 >= 700
// len2 = 5000 len1 >= 1100 len1 >= 600
// len2 = 6000 len1 >= 1300 len1 >= 700
// len2 = 7000 len1 >= 1100 len1 >= 600
// len2 = 8000 len1 >= 900 len1 >= 500
// len2 = 9000 len1 >= 1300 len1 >= 600
// len2 = 10000 len1 >= 1100 len1 >= 500
// len2 = 11000 len1 >= 1000 len1 >= 500
// len2 = 12000 len1 >= 900 len1 >= 700
// len2 = 13000 len1 >= 900 len1 >= 500
// len2 = 14000 len1 >= 900 len1 >= 600
// Here are the timigs from CLN version <= 1.0.3:
// // len2 = 3000 len1 >= 800
// // len2 = 3500 len1 >= 700
// // len2 = 4000 len1 >= 580
// // len2 = 4500 len1 >= 430
// // len2 = 5000 len1 >= 370
// // len2 = 5500 len1 >= 320
// // len2 = 6000 len1 >= 500
// // len2 = 7000 len1 >= 370
// // len2 = 8000 len1 >= 330
// // len2 = 9000 len1 >= 420
// // len2 =10000 len1 >= 370
// // len2 =11000 len1 >= 330
// // len2 =12000 len1 >= 330
// // len2 =13000 len1 >= 350
// Let's choose the following condition: // Let's choose the following condition:
#if CL_USE_GMP
const unsigned int cl_fftm_threshold1 = 600;
#else
// Use the old default values from CLN version <= 1.0.3 as a crude estimate.
const unsigned int cl_fftm_threshold1 = 330; const unsigned int cl_fftm_threshold1 = 330;
#endif
const unsigned int cl_fftm_threshold2 = 2*cl_fftm_threshold; const unsigned int cl_fftm_threshold2 = 2*cl_fftm_threshold;
// len1 > cl_fftm_threshold1 && len2 > cl_fftm_threshold2 // len1 > cl_fftm_threshold1 && len2 > cl_fftm_threshold2
// && len1 >= cl_fftm_threshold1 + cl_fftm_threshold/(len2-cl_fftm_threshold1)*(cl_fftm_threshold-cl_fftm_threshold1). // && len1 >= cl_fftm_threshold1 + cl_fftm_threshold/(len2-cl_fftm_threshold1)*(cl_fftm_threshold-cl_fftm_threshold1).
@ -315,7 +369,7 @@
return cl_false; return cl_false;
} }
#if 0 // Lohnt sich nicht
#if 0 // Doesn't seem to be worth the effort
// FFT-Multiplikation über den komplexen Zahlen. // FFT-Multiplikation über den komplexen Zahlen.
#include "cl_DS_mul_fftc.h" #include "cl_DS_mul_fftc.h"

Loading…
Cancel
Save