You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
6.2 KiB
200 lines
6.2 KiB
from __future__ import annotations
|
|
|
|
from minigrid.core.constants import COLOR_NAMES
|
|
from minigrid.core.grid import Grid
|
|
from minigrid.core.mission import MissionSpace
|
|
from minigrid.core.world_object import Ball, Box, Key
|
|
from minigrid.minigrid_env import MiniGridEnv
|
|
|
|
|
|
class PutNearEnv(MiniGridEnv):
|
|
|
|
"""
|
|
## Description
|
|
|
|
The agent is instructed through a textual string to pick up an object and
|
|
place it next to another object. This environment is easy to solve with two
|
|
objects, but difficult to solve with more, as it involves both textual
|
|
understanding and spatial reasoning involving multiple objects.
|
|
|
|
## Mission Space
|
|
|
|
"put the {move_color} {move_type} near the {target_color} {target_type}"
|
|
|
|
{move_color} and {target_color} can be "red", "green", "blue", "purple",
|
|
"yellow" or "grey".
|
|
|
|
{move_type} and {target_type} Can be "box", "ball" or "key".
|
|
|
|
## Action Space
|
|
|
|
| Num | Name | Action |
|
|
|-----|--------------|-------------------|
|
|
| 0 | left | Turn left |
|
|
| 1 | right | Turn right |
|
|
| 2 | forward | Move forward |
|
|
| 3 | pickup | Pick up an object |
|
|
| 4 | drop | Drop an object |
|
|
| 5 | toggle | Unused |
|
|
| 6 | done | Unused |
|
|
|
|
## Observation Encoding
|
|
|
|
- Each tile is encoded as a 3 dimensional tuple:
|
|
`(OBJECT_IDX, COLOR_IDX, STATE)`
|
|
- `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in
|
|
[minigrid/minigrid.py](minigrid/minigrid.py)
|
|
- `STATE` refers to the door state with 0=open, 1=closed and 2=locked
|
|
|
|
## Rewards
|
|
|
|
A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure.
|
|
|
|
## Termination
|
|
|
|
The episode ends if any one of the following conditions is met:
|
|
|
|
1. The agent picks up the wrong object.
|
|
2. The agent drop the correct object near the target.
|
|
3. Timeout (see `max_steps`).
|
|
|
|
## Registered Configurations
|
|
|
|
N: number of objects.
|
|
|
|
- `MiniGrid-PutNear-6x6-N2-v0`
|
|
- `MiniGrid-PutNear-8x8-N3-v0`
|
|
|
|
"""
|
|
|
|
def __init__(self, size=6, numObjs=2, max_steps: int | None = None, **kwargs):
|
|
self.size = size
|
|
self.numObjs = numObjs
|
|
self.obj_types = ["key", "ball", "box"]
|
|
mission_space = MissionSpace(
|
|
mission_func=self._gen_mission,
|
|
ordered_placeholders=[
|
|
COLOR_NAMES,
|
|
self.obj_types,
|
|
COLOR_NAMES,
|
|
self.obj_types,
|
|
],
|
|
)
|
|
|
|
if max_steps is None:
|
|
max_steps = 5 * size
|
|
|
|
super().__init__(
|
|
mission_space=mission_space,
|
|
width=size,
|
|
height=size,
|
|
# Set this to True for maximum speed
|
|
see_through_walls=True,
|
|
max_steps=max_steps,
|
|
**kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
def _gen_mission(
|
|
move_color: str, move_type: str, target_color: str, target_type: str
|
|
):
|
|
return f"put the {move_color} {move_type} near the {target_color} {target_type}"
|
|
|
|
def _gen_grid(self, width, height):
|
|
self.grid = Grid(width, height)
|
|
|
|
# Generate the surrounding walls
|
|
self.grid.horz_wall(0, 0)
|
|
self.grid.horz_wall(0, height - 1)
|
|
self.grid.vert_wall(0, 0)
|
|
self.grid.vert_wall(width - 1, 0)
|
|
|
|
# Types and colors of objects we can generate
|
|
types = ["key", "ball", "box"]
|
|
|
|
objs = []
|
|
objPos = []
|
|
|
|
def near_obj(env, p1):
|
|
for p2 in objPos:
|
|
dx = p1[0] - p2[0]
|
|
dy = p1[1] - p2[1]
|
|
if abs(dx) <= 1 and abs(dy) <= 1:
|
|
return True
|
|
return False
|
|
|
|
# Until we have generated all the objects
|
|
while len(objs) < self.numObjs:
|
|
objType = self._rand_elem(types)
|
|
objColor = self._rand_elem(COLOR_NAMES)
|
|
|
|
# If this object already exists, try again
|
|
if (objType, objColor) in objs:
|
|
continue
|
|
|
|
if objType == "key":
|
|
obj = Key(objColor)
|
|
elif objType == "ball":
|
|
obj = Ball(objColor)
|
|
elif objType == "box":
|
|
obj = Box(objColor)
|
|
else:
|
|
raise ValueError(
|
|
"{} object type given. Object type can only be of values key, ball and box.".format(
|
|
objType
|
|
)
|
|
)
|
|
|
|
pos = self.place_obj(obj, reject_fn=near_obj)
|
|
|
|
objs.append((objType, objColor))
|
|
objPos.append(pos)
|
|
|
|
# Randomize the agent start position and orientation
|
|
self.place_agent()
|
|
|
|
# Choose a random object to be moved
|
|
objIdx = self._rand_int(0, len(objs))
|
|
self.move_type, self.moveColor = objs[objIdx]
|
|
self.move_pos = objPos[objIdx]
|
|
|
|
# Choose a target object (to put the first object next to)
|
|
while True:
|
|
targetIdx = self._rand_int(0, len(objs))
|
|
if targetIdx != objIdx:
|
|
break
|
|
self.target_type, self.target_color = objs[targetIdx]
|
|
self.target_pos = objPos[targetIdx]
|
|
|
|
self.mission = "put the {} {} near the {} {}".format(
|
|
self.moveColor,
|
|
self.move_type,
|
|
self.target_color,
|
|
self.target_type,
|
|
)
|
|
|
|
def step(self, action):
|
|
preCarrying = self.carrying
|
|
|
|
obs, reward, terminated, truncated, info = super().step(action)
|
|
|
|
u, v = self.dir_vec
|
|
ox, oy = (self.agent_pos[0] + u, self.agent_pos[1] + v)
|
|
tx, ty = self.target_pos
|
|
|
|
# If we picked up the wrong object, terminate the episode
|
|
if action == self.actions.pickup and self.carrying:
|
|
if (
|
|
self.carrying.type != self.move_type
|
|
or self.carrying.color != self.moveColor
|
|
):
|
|
terminated = True
|
|
|
|
# If successfully dropping an object near the target
|
|
if action == self.actions.drop and preCarrying:
|
|
if self.grid.get(ox, oy) is preCarrying:
|
|
if abs(ox - tx) <= 1 and abs(oy - ty) <= 1:
|
|
reward = self._reward()
|
|
terminated = True
|
|
|
|
return obs, reward, terminated, truncated, info
|