from __future__ import annotations from minigrid.core.constants import COLOR_NAMES from minigrid.core.grid import Grid from minigrid.core.mission import MissionSpace from minigrid.core.world_object import Ball, Box, Key from minigrid.minigrid_env import MiniGridEnv class PutNearEnv(MiniGridEnv): """ ## Description The agent is instructed through a textual string to pick up an object and place it next to another object. This environment is easy to solve with two objects, but difficult to solve with more, as it involves both textual understanding and spatial reasoning involving multiple objects. ## Mission Space "put the {move_color} {move_type} near the {target_color} {target_type}" {move_color} and {target_color} can be "red", "green", "blue", "purple", "yellow" or "grey". {move_type} and {target_type} Can be "box", "ball" or "key". ## Action Space | Num | Name | Action | |-----|--------------|-------------------| | 0 | left | Turn left | | 1 | right | Turn right | | 2 | forward | Move forward | | 3 | pickup | Pick up an object | | 4 | drop | Drop an object | | 5 | toggle | Unused | | 6 | done | Unused | ## Observation Encoding - Each tile is encoded as a 3 dimensional tuple: `(OBJECT_IDX, COLOR_IDX, STATE)` - `OBJECT_TO_IDX` and `COLOR_TO_IDX` mapping can be found in [minigrid/minigrid.py](minigrid/minigrid.py) - `STATE` refers to the door state with 0=open, 1=closed and 2=locked ## Rewards A reward of '1 - 0.9 * (step_count / max_steps)' is given for success, and '0' for failure. ## Termination The episode ends if any one of the following conditions is met: 1. The agent picks up the wrong object. 2. The agent drop the correct object near the target. 3. Timeout (see `max_steps`). ## Registered Configurations N: number of objects. - `MiniGrid-PutNear-6x6-N2-v0` - `MiniGrid-PutNear-8x8-N3-v0` """ def __init__(self, size=6, numObjs=2, max_steps: int | None = None, **kwargs): self.size = size self.numObjs = numObjs self.obj_types = ["key", "ball", "box"] mission_space = MissionSpace( mission_func=self._gen_mission, ordered_placeholders=[ COLOR_NAMES, self.obj_types, COLOR_NAMES, self.obj_types, ], ) if max_steps is None: max_steps = 5 * size super().__init__( mission_space=mission_space, width=size, height=size, # Set this to True for maximum speed see_through_walls=True, max_steps=max_steps, **kwargs, ) @staticmethod def _gen_mission( move_color: str, move_type: str, target_color: str, target_type: str ): return f"put the {move_color} {move_type} near the {target_color} {target_type}" def _gen_grid(self, width, height): self.grid = Grid(width, height) # Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height - 1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width - 1, 0) # Types and colors of objects we can generate types = ["key", "ball", "box"] objs = [] objPos = [] def near_obj(env, p1): for p2 in objPos: dx = p1[0] - p2[0] dy = p1[1] - p2[1] if abs(dx) <= 1 and abs(dy) <= 1: return True return False # Until we have generated all the objects while len(objs) < self.numObjs: objType = self._rand_elem(types) objColor = self._rand_elem(COLOR_NAMES) # If this object already exists, try again if (objType, objColor) in objs: continue if objType == "key": obj = Key(objColor) elif objType == "ball": obj = Ball(objColor) elif objType == "box": obj = Box(objColor) else: raise ValueError( "{} object type given. Object type can only be of values key, ball and box.".format( objType ) ) pos = self.place_obj(obj, reject_fn=near_obj) objs.append((objType, objColor)) objPos.append(pos) # Randomize the agent start position and orientation self.place_agent() # Choose a random object to be moved objIdx = self._rand_int(0, len(objs)) self.move_type, self.moveColor = objs[objIdx] self.move_pos = objPos[objIdx] # Choose a target object (to put the first object next to) while True: targetIdx = self._rand_int(0, len(objs)) if targetIdx != objIdx: break self.target_type, self.target_color = objs[targetIdx] self.target_pos = objPos[targetIdx] self.mission = "put the {} {} near the {} {}".format( self.moveColor, self.move_type, self.target_color, self.target_type, ) def step(self, action): preCarrying = self.carrying obs, reward, terminated, truncated, info = super().step(action) u, v = self.dir_vec ox, oy = (self.agent_pos[0] + u, self.agent_pos[1] + v) tx, ty = self.target_pos # If we picked up the wrong object, terminate the episode if action == self.actions.pickup and self.carrying: if ( self.carrying.type != self.move_type or self.carrying.color != self.moveColor ): terminated = True # If successfully dropping an object near the target if action == self.actions.drop and preCarrying: if self.grid.get(ox, oy) is preCarrying: if abs(ox - tx) <= 1 and abs(oy - ty) <= 1: reward = self._reward() terminated = True return obs, reward, terminated, truncated, info