You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							589 lines
						
					
					
						
							28 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							589 lines
						
					
					
						
							28 KiB
						
					
					
				| /* | |
|     pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices | |
|  | |
|     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | |
|  | |
|     All rights reserved. Use of this source code is governed by a | |
|     BSD-style license that can be found in the LICENSE file. | |
| */ | |
| 
 | |
| #pragma once | |
|  | |
| #include "numpy.h" | |
|  | |
| #if defined(__INTEL_COMPILER) | |
| #  pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) | |
| #elif defined(__GNUG__) || defined(__clang__) | |
| #  pragma GCC diagnostic push | |
| #  pragma GCC diagnostic ignored "-Wconversion" | |
| #  pragma GCC diagnostic ignored "-Wdeprecated-declarations" | |
| #  if __GNUC__ >= 7 | |
| #    pragma GCC diagnostic ignored "-Wint-in-bool-context" | |
| #  endif | |
| #endif | |
|  | |
| #include <Eigen/Core> | |
| #include <Eigen/SparseCore> | |
|  | |
| #if defined(_MSC_VER) | |
| #  pragma warning(push) | |
| #  pragma warning(disable: 4127) // warning C4127: Conditional expression is constant | |
| #endif | |
|  | |
| // Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit | |
| // move constructors that break things.  We could detect this an explicitly copy, but an extra copy | |
| // of matrices seems highly undesirable. | |
| static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7"); | |
| 
 | |
| NAMESPACE_BEGIN(pybind11) | |
| 
 | |
| // Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides: | |
| using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>; | |
| template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>; | |
| template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>; | |
| 
 | |
| NAMESPACE_BEGIN(detail) | |
| 
 | |
| #if EIGEN_VERSION_AT_LEAST(3,3,0) | |
| using EigenIndex = Eigen::Index; | |
| #else | |
| using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE; | |
| #endif | |
|  | |
| // Matches Eigen::Map, Eigen::Ref, blocks, etc: | |
| template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>; | |
| template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>; | |
| template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>; | |
| template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>; | |
| // Test for objects inheriting from EigenBase<Derived> that aren't captured by the above.  This | |
| // basically covers anything that can be assigned to a dense matrix but that don't have a typical | |
| // matrix data layout that can be copied from their .data().  For example, DiagonalMatrix and | |
| // SelfAdjointView fall into this category. | |
| template <typename T> using is_eigen_other = all_of< | |
|     is_template_base_of<Eigen::EigenBase, T>, | |
|     negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>> | |
| >; | |
| 
 | |
| // Captures numpy/eigen conformability status (returned by EigenProps::conformable()): | |
| template <bool EigenRowMajor> struct EigenConformable { | |
|     bool conformable = false; | |
|     EigenIndex rows = 0, cols = 0; | |
|     EigenDStride stride{0, 0}; | |
| 
 | |
|     EigenConformable(bool fits = false) : conformable{fits} {} | |
|     // Matrix type: | |
|     EigenConformable(EigenIndex r, EigenIndex c, | |
|             EigenIndex rstride, EigenIndex cstride) : | |
|         conformable{true}, rows{r}, cols{c}, | |
|         stride(EigenRowMajor ? rstride : cstride /* outer stride */, | |
|                EigenRowMajor ? cstride : rstride /* inner stride */) | |
|         {} | |
|     // Vector type: | |
|     EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride) | |
|         : EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {} | |
| 
 | |
|     template <typename props> bool stride_compatible() const { | |
|         // To have compatible strides, we need (on both dimensions) one of fully dynamic strides, | |
|         // matching strides, or a dimension size of 1 (in which case the stride value is irrelevant) | |
|         return | |
|             (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() || | |
|                 (EigenRowMajor ? cols : rows) == 1) && | |
|             (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() || | |
|                 (EigenRowMajor ? rows : cols) == 1); | |
|     } | |
|     operator bool() const { return conformable; } | |
| }; | |
| 
 | |
| template <typename Type> struct eigen_extract_stride { using type = Type; }; | |
| template <typename PlainObjectType, int MapOptions, typename StrideType> | |
| struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; }; | |
| template <typename PlainObjectType, int Options, typename StrideType> | |
| struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; }; | |
| 
 | |
| // Helper struct for extracting information from an Eigen type | |
| template <typename Type_> struct EigenProps { | |
|     using Type = Type_; | |
|     using Scalar = typename Type::Scalar; | |
|     using StrideType = typename eigen_extract_stride<Type>::type; | |
|     static constexpr EigenIndex | |
|         rows = Type::RowsAtCompileTime, | |
|         cols = Type::ColsAtCompileTime, | |
|         size = Type::SizeAtCompileTime; | |
|     static constexpr bool | |
|         row_major = Type::IsRowMajor, | |
|         vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1 | |
|         fixed_rows = rows != Eigen::Dynamic, | |
|         fixed_cols = cols != Eigen::Dynamic, | |
|         fixed = size != Eigen::Dynamic, // Fully-fixed size | |
|         dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size | |
|  | |
|     template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>; | |
|     static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value, | |
|                                 outer_stride = if_zero<StrideType::OuterStrideAtCompileTime, | |
|                                                        vector ? size : row_major ? cols : rows>::value; | |
|     static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic; | |
|     static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1; | |
|     static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1; | |
| 
 | |
|     // Takes an input array and determines whether we can make it fit into the Eigen type.  If | |
|     // the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector | |
|     // (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type). | |
|     static EigenConformable<row_major> conformable(const array &a) { | |
|         const auto dims = a.ndim(); | |
|         if (dims < 1 || dims > 2) | |
|             return false; | |
| 
 | |
|         if (dims == 2) { // Matrix type: require exact match (or dynamic) | |
|  | |
|             EigenIndex | |
|                 np_rows = a.shape(0), | |
|                 np_cols = a.shape(1), | |
|                 np_rstride = a.strides(0) / sizeof(Scalar), | |
|                 np_cstride = a.strides(1) / sizeof(Scalar); | |
|             if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols)) | |
|                 return false; | |
| 
 | |
|             return {np_rows, np_cols, np_rstride, np_cstride}; | |
|         } | |
| 
 | |
|         // Otherwise we're storing an n-vector.  Only one of the strides will be used, but whichever | |
|         // is used, we want the (single) numpy stride value. | |
|         const EigenIndex n = a.shape(0), | |
|               stride = a.strides(0) / sizeof(Scalar); | |
| 
 | |
|         if (vector) { // Eigen type is a compile-time vector | |
|             if (fixed && size != n) | |
|                 return false; // Vector size mismatch | |
|             return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride}; | |
|         } | |
|         else if (fixed) { | |
|             // The type has a fixed size, but is not a vector: abort | |
|             return false; | |
|         } | |
|         else if (fixed_cols) { | |
|             // Since this isn't a vector, cols must be != 1.  We allow this only if it exactly | |
|             // equals the number of elements (rows is Dynamic, and so 1 row is allowed). | |
|             if (cols != n) return false; | |
|             return {1, n, stride}; | |
|         } | |
|         else { | |
|             // Otherwise it's either fully dynamic, or column dynamic; both become a column vector | |
|             if (fixed_rows && rows != n) return false; | |
|             return {n, 1, stride}; | |
|         } | |
|     } | |
| 
 | |
|     static PYBIND11_DESCR descriptor() { | |
|         constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value; | |
|         constexpr bool show_order = is_eigen_dense_map<Type>::value; | |
|         constexpr bool show_c_contiguous = show_order && requires_row_major; | |
|         constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major; | |
| 
 | |
|     return _("numpy.ndarray[") + npy_format_descriptor<Scalar>::name() + | |
|         _("[")  + _<fixed_rows>(_<(size_t) rows>(), _("m")) + | |
|         _(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) + | |
|         _("]") + | |
|         // For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be | |
|         // satisfied: writeable=True (for a mutable reference), and, depending on the map's stride | |
|         // options, possibly f_contiguous or c_contiguous.  We include them in the descriptor output | |
|         // to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to | |
|         // see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you | |
|         // *gave* a numpy.ndarray of the right type and dimensions. | |
|         _<show_writeable>(", flags.writeable", "") + | |
|         _<show_c_contiguous>(", flags.c_contiguous", "") + | |
|         _<show_f_contiguous>(", flags.f_contiguous", "") + | |
|         _("]"); | |
|     } | |
| }; | |
| 
 | |
| // Casts an Eigen type to numpy array.  If given a base, the numpy array references the src data, | |
| // otherwise it'll make a copy.  writeable lets you turn off the writeable flag for the array. | |
| template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) { | |
|     constexpr size_t elem_size = sizeof(typename props::Scalar); | |
|     std::vector<size_t> shape, strides; | |
|     if (props::vector) { | |
|         shape.push_back(src.size()); | |
|         strides.push_back(elem_size * src.innerStride()); | |
|     } | |
|     else { | |
|         shape.push_back(src.rows()); | |
|         shape.push_back(src.cols()); | |
|         strides.push_back(elem_size * src.rowStride()); | |
|         strides.push_back(elem_size * src.colStride()); | |
|     } | |
|     array a(std::move(shape), std::move(strides), src.data(), base); | |
|     if (!writeable) | |
|         array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_; | |
| 
 | |
|     return a.release(); | |
| } | |
| 
 | |
| // Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that | |
| // reference the Eigen object's data with `base` as the python-registered base class (if omitted, | |
| // the base will be set to None, and lifetime management is up to the caller).  The numpy array is | |
| // non-writeable if the given type is const. | |
| template <typename props, typename Type> | |
| handle eigen_ref_array(Type &src, handle parent = none()) { | |
|     // none here is to get past array's should-we-copy detection, which currently always | |
|     // copies when there is no base.  Setting the base to None should be harmless. | |
|     return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value); | |
| } | |
| 
 | |
| // Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy | |
| // array that references the encapsulated data with a python-side reference to the capsule to tie | |
| // its destruction to that of any dependent python objects.  Const-ness is determined by whether or | |
| // not the Type of the pointer given is const. | |
| template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>> | |
| handle eigen_encapsulate(Type *src) { | |
|     capsule base(src, [](void *o) { delete static_cast<Type *>(o); }); | |
|     return eigen_ref_array<props>(*src, base); | |
| } | |
| 
 | |
| // Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense | |
| // types. | |
| template<typename Type> | |
| struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> { | |
|     using Scalar = typename Type::Scalar; | |
|     using props = EigenProps<Type>; | |
| 
 | |
|     bool load(handle src, bool) { | |
|         auto buf = array_t<Scalar>::ensure(src); | |
|         if (!buf) | |
|             return false; | |
| 
 | |
|         auto dims = buf.ndim(); | |
|         if (dims < 1 || dims > 2) | |
|             return false; | |
| 
 | |
|         auto fits = props::conformable(buf); | |
|         if (!fits) | |
|             return false; // Non-comformable vector/matrix types | |
|  | |
|         value = Eigen::Map<const Type, 0, EigenDStride>(buf.data(), fits.rows, fits.cols, fits.stride); | |
| 
 | |
|         return true; | |
|     } | |
| 
 | |
| private: | |
| 
 | |
|     // Cast implementation | |
|     template <typename CType> | |
|     static handle cast_impl(CType *src, return_value_policy policy, handle parent) { | |
|         switch (policy) { | |
|             case return_value_policy::take_ownership: | |
|             case return_value_policy::automatic: | |
|                 return eigen_encapsulate<props>(src); | |
|             case return_value_policy::move: | |
|                 return eigen_encapsulate<props>(new CType(std::move(*src))); | |
|             case return_value_policy::copy: | |
|                 return eigen_array_cast<props>(*src); | |
|             case return_value_policy::reference: | |
|             case return_value_policy::automatic_reference: | |
|                 return eigen_ref_array<props>(*src); | |
|             case return_value_policy::reference_internal: | |
|                 return eigen_ref_array<props>(*src, parent); | |
|             default: | |
|                 throw cast_error("unhandled return_value_policy: should not happen!"); | |
|         }; | |
|     } | |
| 
 | |
| public: | |
| 
 | |
|     // Normal returned non-reference, non-const value: | |
|     static handle cast(Type &&src, return_value_policy /* policy */, handle parent) { | |
|         return cast_impl(&src, return_value_policy::move, parent); | |
|     } | |
|     // If you return a non-reference const, we mark the numpy array readonly: | |
|     static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) { | |
|         return cast_impl(&src, return_value_policy::move, parent); | |
|     } | |
|     // lvalue reference return; default (automatic) becomes copy | |
|     static handle cast(Type &src, return_value_policy policy, handle parent) { | |
|         if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) | |
|             policy = return_value_policy::copy; | |
|         return cast_impl(&src, policy, parent); | |
|     } | |
|     // const lvalue reference return; default (automatic) becomes copy | |
|     static handle cast(const Type &src, return_value_policy policy, handle parent) { | |
|         if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) | |
|             policy = return_value_policy::copy; | |
|         return cast(&src, policy, parent); | |
|     } | |
|     // non-const pointer return | |
|     static handle cast(Type *src, return_value_policy policy, handle parent) { | |
|         return cast_impl(src, policy, parent); | |
|     } | |
|     // const pointer return | |
|     static handle cast(const Type *src, return_value_policy policy, handle parent) { | |
|         return cast_impl(src, policy, parent); | |
|     } | |
| 
 | |
|     static PYBIND11_DESCR name() { return type_descr(props::descriptor()); } | |
| 
 | |
|     operator Type*() { return &value; } | |
|     operator Type&() { return value; } | |
|     template <typename T> using cast_op_type = cast_op_type<T>; | |
| 
 | |
| private: | |
|     Type value; | |
| }; | |
| 
 | |
| // Eigen Ref/Map classes have slightly different policy requirements, meaning we don't want to force | |
| // `move` when a Ref/Map rvalue is returned; we treat Ref<> sort of like a pointer (we care about | |
| // the underlying data, not the outer shell). | |
| template <typename Return> | |
| struct return_value_policy_override<Return, enable_if_t<is_eigen_dense_map<Return>::value>> { | |
|     static return_value_policy policy(return_value_policy p) { return p; } | |
| }; | |
| 
 | |
| // Base class for casting reference/map/block/etc. objects back to python. | |
| template <typename MapType> struct eigen_map_caster { | |
| private: | |
|     using props = EigenProps<MapType>; | |
| 
 | |
| public: | |
| 
 | |
|     // Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has | |
|     // to stay around), but we'll allow it under the assumption that you know what you're doing (and | |
|     // have an appropriate keep_alive in place).  We return a numpy array pointing directly at the | |
|     // ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note | |
|     // that this means you need to ensure you don't destroy the object in some other way (e.g. with | |
|     // an appropriate keep_alive, or with a reference to a statically allocated matrix). | |
|     static handle cast(const MapType &src, return_value_policy policy, handle parent) { | |
|         switch (policy) { | |
|             case return_value_policy::copy: | |
|                 return eigen_array_cast<props>(src); | |
|             case return_value_policy::reference_internal: | |
|                 return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value); | |
|             case return_value_policy::reference: | |
|             case return_value_policy::automatic: | |
|             case return_value_policy::automatic_reference: | |
|                 return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value); | |
|             default: | |
|                 // move, take_ownership don't make any sense for a ref/map: | |
|                 pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type"); | |
|         } | |
|     } | |
| 
 | |
|     static PYBIND11_DESCR name() { return props::descriptor(); } | |
| 
 | |
|     // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return | |
|     // types but not bound arguments).  We still provide them (with an explicitly delete) so that | |
|     // you end up here if you try anyway. | |
|     bool load(handle, bool) = delete; | |
|     operator MapType() = delete; | |
|     template <typename> using cast_op_type = MapType; | |
| }; | |
| 
 | |
| // We can return any map-like object (but can only load Refs, specialized next): | |
| template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> | |
|     : eigen_map_caster<Type> {}; | |
| 
 | |
| // Loader for Ref<...> arguments.  See the documentation for info on how to make this work without | |
| // copying (it requires some extra effort in many cases). | |
| template <typename PlainObjectType, typename StrideType> | |
| struct type_caster< | |
|     Eigen::Ref<PlainObjectType, 0, StrideType>, | |
|     enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value> | |
| > : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> { | |
| private: | |
|     using Type = Eigen::Ref<PlainObjectType, 0, StrideType>; | |
|     using props = EigenProps<Type>; | |
|     using Scalar = typename props::Scalar; | |
|     using MapType = Eigen::Map<PlainObjectType, 0, StrideType>; | |
|     using Array = array_t<Scalar, array::forcecast | | |
|                 ((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style : | |
|                  (props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>; | |
|     static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value; | |
|     // Delay construction (these have no default constructor) | |
|     std::unique_ptr<MapType> map; | |
|     std::unique_ptr<Type> ref; | |
|     // Our array.  When possible, this is just a numpy array pointing to the source data, but | |
|     // sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible | |
|     // layout, or is an array of a type that needs to be converted).  Using a numpy temporary | |
|     // (rather than an Eigen temporary) saves an extra copy when we need both type conversion and | |
|     // storage order conversion.  (Note that we refuse to use this temporary copy when loading an | |
|     // argument for a Ref<M> with M non-const, i.e. a read-write reference). | |
|     Array copy_or_ref; | |
| public: | |
|     bool load(handle src, bool convert) { | |
|         // First check whether what we have is already an array of the right type.  If not, we can't | |
|         // avoid a copy (because the copy is also going to do type conversion). | |
|         bool need_copy = !isinstance<Array>(src); | |
| 
 | |
|         EigenConformable<props::row_major> fits; | |
|         if (!need_copy) { | |
|             // We don't need a converting copy, but we also need to check whether the strides are | |
|             // compatible with the Ref's stride requirements | |
|             Array aref = reinterpret_borrow<Array>(src); | |
| 
 | |
|             if (aref && (!need_writeable || aref.writeable())) { | |
|                 fits = props::conformable(aref); | |
|                 if (!fits) return false; // Incompatible dimensions | |
|                 if (!fits.template stride_compatible<props>()) | |
|                     need_copy = true; | |
|                 else | |
|                     copy_or_ref = std::move(aref); | |
|             } | |
|             else { | |
|                 need_copy = true; | |
|             } | |
|         } | |
| 
 | |
|         if (need_copy) { | |
|             // We need to copy: If we need a mutable reference, or we're not supposed to convert | |
|             // (either because we're in the no-convert overload pass, or because we're explicitly | |
|             // instructed not to copy (via `py::arg().noconvert()`) we have to fail loading. | |
|             if (!convert || need_writeable) return false; | |
| 
 | |
|             Array copy = Array::ensure(src); | |
|             if (!copy) return false; | |
|             fits = props::conformable(copy); | |
|             if (!fits || !fits.template stride_compatible<props>()) | |
|                 return false; | |
|             copy_or_ref = std::move(copy); | |
|         } | |
| 
 | |
|         ref.reset(); | |
|         map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner()))); | |
|         ref.reset(new Type(*map)); | |
| 
 | |
|         return true; | |
|     } | |
| 
 | |
|     operator Type*() { return ref.get(); } | |
|     operator Type&() { return *ref; } | |
|     template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>; | |
| 
 | |
| private: | |
|     template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0> | |
|     Scalar *data(Array &a) { return a.mutable_data(); } | |
| 
 | |
|     template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0> | |
|     const Scalar *data(Array &a) { return a.data(); } | |
| 
 | |
|     // Attempt to figure out a constructor of `Stride` that will work. | |
|     // If both strides are fixed, use a default constructor: | |
|     template <typename S> using stride_ctor_default = bool_constant< | |
|         S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && | |
|         std::is_default_constructible<S>::value>; | |
|     // Otherwise, if there is a two-index constructor, assume it is (outer,inner) like | |
|     // Eigen::Stride, and use it: | |
|     template <typename S> using stride_ctor_dual = bool_constant< | |
|         !stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>; | |
|     // Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use | |
|     // it (passing whichever stride is dynamic). | |
|     template <typename S> using stride_ctor_outer = bool_constant< | |
|         !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && | |
|         S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic && | |
|         std::is_constructible<S, EigenIndex>::value>; | |
|     template <typename S> using stride_ctor_inner = bool_constant< | |
|         !any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value && | |
|         S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic && | |
|         std::is_constructible<S, EigenIndex>::value>; | |
| 
 | |
|     template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0> | |
|     static S make_stride(EigenIndex, EigenIndex) { return S(); } | |
|     template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0> | |
|     static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); } | |
|     template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0> | |
|     static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); } | |
|     template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0> | |
|     static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); } | |
| 
 | |
| }; | |
| 
 | |
| // type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not | |
| // EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout). | |
| // load() is not supported, but we can cast them into the python domain by first copying to a | |
| // regular Eigen::Matrix, then casting that. | |
| template <typename Type> | |
| struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> { | |
| protected: | |
|     using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>; | |
|     using props = EigenProps<Matrix>; | |
| public: | |
|     static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { | |
|         handle h = eigen_encapsulate<props>(new Matrix(src)); | |
|         return h; | |
|     } | |
|     static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); } | |
| 
 | |
|     static PYBIND11_DESCR name() { return props::descriptor(); } | |
| 
 | |
|     // Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return | |
|     // types but not bound arguments).  We still provide them (with an explicitly delete) so that | |
|     // you end up here if you try anyway. | |
|     bool load(handle, bool) = delete; | |
|     operator Type() = delete; | |
|     template <typename> using cast_op_type = Type; | |
| }; | |
| 
 | |
| template<typename Type> | |
| struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> { | |
|     typedef typename Type::Scalar Scalar; | |
|     typedef typename std::remove_reference<decltype(*std::declval<Type>().outerIndexPtr())>::type StorageIndex; | |
|     typedef typename Type::Index Index; | |
|     static constexpr bool rowMajor = Type::IsRowMajor; | |
| 
 | |
|     bool load(handle src, bool) { | |
|         if (!src) | |
|             return false; | |
| 
 | |
|         auto obj = reinterpret_borrow<object>(src); | |
|         object sparse_module = module::import("scipy.sparse"); | |
|         object matrix_type = sparse_module.attr( | |
|             rowMajor ? "csr_matrix" : "csc_matrix"); | |
| 
 | |
|         if (obj.get_type() != matrix_type.ptr()) { | |
|             try { | |
|                 obj = matrix_type(obj); | |
|             } catch (const error_already_set &) { | |
|                 return false; | |
|             } | |
|         } | |
| 
 | |
|         auto values = array_t<Scalar>((object) obj.attr("data")); | |
|         auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices")); | |
|         auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr")); | |
|         auto shape = pybind11::tuple((pybind11::object) obj.attr("shape")); | |
|         auto nnz = obj.attr("nnz").cast<Index>(); | |
| 
 | |
|         if (!values || !innerIndices || !outerIndices) | |
|             return false; | |
| 
 | |
|         value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>( | |
|             shape[0].cast<Index>(), shape[1].cast<Index>(), nnz, | |
|             outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data()); | |
| 
 | |
|         return true; | |
|     } | |
| 
 | |
|     static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) { | |
|         const_cast<Type&>(src).makeCompressed(); | |
| 
 | |
|         object matrix_type = module::import("scipy.sparse").attr( | |
|             rowMajor ? "csr_matrix" : "csc_matrix"); | |
| 
 | |
|         array data((size_t) src.nonZeros(), src.valuePtr()); | |
|         array outerIndices((size_t) (rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr()); | |
|         array innerIndices((size_t) src.nonZeros(), src.innerIndexPtr()); | |
| 
 | |
|         return matrix_type( | |
|             std::make_tuple(data, innerIndices, outerIndices), | |
|             std::make_pair(src.rows(), src.cols()) | |
|         ).release(); | |
|     } | |
| 
 | |
|     PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[") | |
|             + npy_format_descriptor<Scalar>::name() + _("]")); | |
| }; | |
| 
 | |
| NAMESPACE_END(detail) | |
| NAMESPACE_END(pybind11) | |
| 
 | |
| #if defined(__GNUG__) || defined(__clang__) | |
| #  pragma GCC diagnostic pop | |
| #elif defined(_MSC_VER) | |
| #  pragma warning(pop) | |
| #endif
 |