You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							1604 lines
						
					
					
						
							64 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							1604 lines
						
					
					
						
							64 KiB
						
					
					
				| /* | |
|     pybind11/cast.h: Partial template specializations to cast between | |
|     C++ and Python types | |
|  | |
|     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | |
|  | |
|     All rights reserved. Use of this source code is governed by a | |
|     BSD-style license that can be found in the LICENSE file. | |
| */ | |
| 
 | |
| #pragma once | |
|  | |
| #include "pytypes.h" | |
| #include "typeid.h" | |
| #include "descr.h" | |
| #include <array> | |
| #include <limits> | |
|  | |
| NAMESPACE_BEGIN(pybind11) | |
| NAMESPACE_BEGIN(detail) | |
| inline PyTypeObject *make_static_property_type(); | |
| inline PyTypeObject *make_default_metaclass(); | |
| 
 | |
| /// Additional type information which does not fit into the PyTypeObject | |
| struct type_info { | |
|     PyTypeObject *type; | |
|     size_t type_size; | |
|     void *(*operator_new)(size_t); | |
|     void (*init_holder)(PyObject *, const void *); | |
|     void (*dealloc)(PyObject *); | |
|     std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions; | |
|     std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts; | |
|     std::vector<bool (*)(PyObject *, void *&)> *direct_conversions; | |
|     buffer_info *(*get_buffer)(PyObject *, void *) = nullptr; | |
|     void *get_buffer_data = nullptr; | |
|     /** A simple type never occurs as a (direct or indirect) parent | |
|      * of a class that makes use of multiple inheritance */ | |
|     bool simple_type = true; | |
|     /* for base vs derived holder_type checks */ | |
|     bool default_holder = true; | |
| }; | |
| 
 | |
| PYBIND11_NOINLINE inline internals &get_internals() { | |
|     static internals *internals_ptr = nullptr; | |
|     if (internals_ptr) | |
|         return *internals_ptr; | |
|     handle builtins(PyEval_GetBuiltins()); | |
|     const char *id = PYBIND11_INTERNALS_ID; | |
|     if (builtins.contains(id) && isinstance<capsule>(builtins[id])) { | |
|         internals_ptr = capsule(builtins[id]); | |
|     } else { | |
|         internals_ptr = new internals(); | |
|         #if defined(WITH_THREAD) | |
|             PyEval_InitThreads(); | |
|             PyThreadState *tstate = PyThreadState_Get(); | |
|             internals_ptr->tstate = PyThread_create_key(); | |
|             PyThread_set_key_value(internals_ptr->tstate, tstate); | |
|             internals_ptr->istate = tstate->interp; | |
|         #endif | |
|         builtins[id] = capsule(internals_ptr); | |
|         internals_ptr->registered_exception_translators.push_front( | |
|             [](std::exception_ptr p) -> void { | |
|                 try { | |
|                     if (p) std::rethrow_exception(p); | |
|                 } catch (error_already_set &e)           { e.restore();                                    return; | |
|                 } catch (const builtin_exception &e)     { e.set_error();                                  return; | |
|                 } catch (const std::bad_alloc &e)        { PyErr_SetString(PyExc_MemoryError,   e.what()); return; | |
|                 } catch (const std::domain_error &e)     { PyErr_SetString(PyExc_ValueError,    e.what()); return; | |
|                 } catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError,    e.what()); return; | |
|                 } catch (const std::length_error &e)     { PyErr_SetString(PyExc_ValueError,    e.what()); return; | |
|                 } catch (const std::out_of_range &e)     { PyErr_SetString(PyExc_IndexError,    e.what()); return; | |
|                 } catch (const std::range_error &e)      { PyErr_SetString(PyExc_ValueError,    e.what()); return; | |
|                 } catch (const std::exception &e)        { PyErr_SetString(PyExc_RuntimeError,  e.what()); return; | |
|                 } catch (...) { | |
|                     PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!"); | |
|                     return; | |
|                 } | |
|             } | |
|         ); | |
|         internals_ptr->static_property_type = make_static_property_type(); | |
|         internals_ptr->default_metaclass = make_default_metaclass(); | |
|     } | |
|     return *internals_ptr; | |
| } | |
| 
 | |
| PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) { | |
|     auto const &type_dict = get_internals().registered_types_py; | |
|     do { | |
|         auto it = type_dict.find(type); | |
|         if (it != type_dict.end()) | |
|             return (detail::type_info *) it->second; | |
|         type = type->tp_base; | |
|         if (!type) | |
|             return nullptr; | |
|     } while (true); | |
| } | |
| 
 | |
| PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp, | |
|                                                           bool throw_if_missing = false) { | |
|     auto &types = get_internals().registered_types_cpp; | |
| 
 | |
|     auto it = types.find(std::type_index(tp)); | |
|     if (it != types.end()) | |
|         return (detail::type_info *) it->second; | |
|     if (throw_if_missing) { | |
|         std::string tname = tp.name(); | |
|         detail::clean_type_id(tname); | |
|         pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\""); | |
|     } | |
|     return nullptr; | |
| } | |
| 
 | |
| PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) { | |
|     detail::type_info *type_info = get_type_info(tp, throw_if_missing); | |
|     return handle(type_info ? ((PyObject *) type_info->type) : nullptr); | |
| } | |
| 
 | |
| PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) { | |
|     handle type = detail::get_type_handle(tp, false); | |
|     if (!type) | |
|         return false; | |
|     return isinstance(obj, type); | |
| } | |
| 
 | |
| PYBIND11_NOINLINE inline std::string error_string() { | |
|     if (!PyErr_Occurred()) { | |
|         PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred"); | |
|         return "Unknown internal error occurred"; | |
|     } | |
| 
 | |
|     error_scope scope; // Preserve error state | |
|  | |
|     std::string errorString; | |
|     if (scope.type) { | |
|         errorString += handle(scope.type).attr("__name__").cast<std::string>(); | |
|         errorString += ": "; | |
|     } | |
|     if (scope.value) | |
|         errorString += (std::string) str(scope.value); | |
| 
 | |
|     PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace); | |
| 
 | |
| #if PY_MAJOR_VERSION >= 3 | |
|     if (scope.trace != nullptr) | |
|         PyException_SetTraceback(scope.value, scope.trace); | |
| #endif | |
|  | |
| #if !defined(PYPY_VERSION) | |
|     if (scope.trace) { | |
|         PyTracebackObject *trace = (PyTracebackObject *) scope.trace; | |
| 
 | |
|         /* Get the deepest trace possible */ | |
|         while (trace->tb_next) | |
|             trace = trace->tb_next; | |
| 
 | |
|         PyFrameObject *frame = trace->tb_frame; | |
|         errorString += "\n\nAt:\n"; | |
|         while (frame) { | |
|             int lineno = PyFrame_GetLineNumber(frame); | |
|             errorString += | |
|                 "  " + handle(frame->f_code->co_filename).cast<std::string>() + | |
|                 "(" + std::to_string(lineno) + "): " + | |
|                 handle(frame->f_code->co_name).cast<std::string>() + "\n"; | |
|             frame = frame->f_back; | |
|         } | |
|         trace = trace->tb_next; | |
|     } | |
| #endif | |
|  | |
|     return errorString; | |
| } | |
| 
 | |
| PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) { | |
|     auto &instances = get_internals().registered_instances; | |
|     auto range = instances.equal_range(ptr); | |
|     for (auto it = range.first; it != range.second; ++it) { | |
|         auto instance_type = detail::get_type_info(Py_TYPE(it->second)); | |
|         if (instance_type && instance_type == type) | |
|             return handle((PyObject *) it->second); | |
|     } | |
|     return handle(); | |
| } | |
| 
 | |
| inline PyThreadState *get_thread_state_unchecked() { | |
| #if defined(PYPY_VERSION) | |
|     return PyThreadState_GET(); | |
| #elif PY_VERSION_HEX < 0x03000000 | |
|     return _PyThreadState_Current; | |
| #elif PY_VERSION_HEX < 0x03050000 | |
|     return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current); | |
| #elif PY_VERSION_HEX < 0x03050200 | |
|     return (PyThreadState*) _PyThreadState_Current.value; | |
| #else | |
|     return _PyThreadState_UncheckedGet(); | |
| #endif | |
| } | |
| 
 | |
| // Forward declaration | |
| inline void keep_alive_impl(handle nurse, handle patient); | |
| 
 | |
| class type_caster_generic { | |
| public: | |
|     PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info) | |
|      : typeinfo(get_type_info(type_info)) { } | |
| 
 | |
|     PYBIND11_NOINLINE bool load(handle src, bool convert) { | |
|         if (!src) | |
|             return false; | |
|         return load(src, convert, Py_TYPE(src.ptr())); | |
|     } | |
| 
 | |
|     bool load(handle src, bool convert, PyTypeObject *tobj) { | |
|         if (!src || !typeinfo) | |
|             return false; | |
|         if (src.is_none()) { | |
|             value = nullptr; | |
|             return true; | |
|         } | |
| 
 | |
|         if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ | |
|             /* Check if we can safely perform a reinterpret-style cast */ | |
|             if (PyType_IsSubtype(tobj, typeinfo->type)) { | |
|                 value = reinterpret_cast<instance<void> *>(src.ptr())->value; | |
|                 return true; | |
|             } | |
|         } else { /* Case 2: multiple inheritance */ | |
|             /* Check if we can safely perform a reinterpret-style cast */ | |
|             if (tobj == typeinfo->type) { | |
|                 value = reinterpret_cast<instance<void> *>(src.ptr())->value; | |
|                 return true; | |
|             } | |
| 
 | |
|             /* If this is a python class, also check the parents recursively */ | |
|             auto const &type_dict = get_internals().registered_types_py; | |
|             bool new_style_class = PyType_Check((PyObject *) tobj); | |
|             if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { | |
|                 auto parents = reinterpret_borrow<tuple>(tobj->tp_bases); | |
|                 for (handle parent : parents) { | |
|                     bool result = load(src, convert, (PyTypeObject *) parent.ptr()); | |
|                     if (result) | |
|                         return true; | |
|                 } | |
|             } | |
| 
 | |
|             /* Try implicit casts */ | |
|             for (auto &cast : typeinfo->implicit_casts) { | |
|                 type_caster_generic sub_caster(*cast.first); | |
|                 if (sub_caster.load(src, convert)) { | |
|                     value = cast.second(sub_caster.value); | |
|                     return true; | |
|                 } | |
|             } | |
|         } | |
| 
 | |
|         /* Perform an implicit conversion */ | |
|         if (convert) { | |
|             for (auto &converter : typeinfo->implicit_conversions) { | |
|                 temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type)); | |
|                 if (load(temp, false)) | |
|                     return true; | |
|             } | |
|             for (auto &converter : *typeinfo->direct_conversions) { | |
|                 if (converter(src.ptr(), value)) | |
|                     return true; | |
|             } | |
|         } | |
|         return false; | |
|     } | |
| 
 | |
|     PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent, | |
|                                          const std::type_info *type_info, | |
|                                          const std::type_info *type_info_backup, | |
|                                          void *(*copy_constructor)(const void *), | |
|                                          void *(*move_constructor)(const void *), | |
|                                          const void *existing_holder = nullptr) { | |
|         void *src = const_cast<void *>(_src); | |
|         if (src == nullptr) | |
|             return none().inc_ref(); | |
| 
 | |
|         auto &internals = get_internals(); | |
| 
 | |
|         auto it = internals.registered_types_cpp.find(std::type_index(*type_info)); | |
|         if (it == internals.registered_types_cpp.end()) { | |
|             type_info = type_info_backup; | |
|             it = internals.registered_types_cpp.find(std::type_index(*type_info)); | |
|         } | |
| 
 | |
|         if (it == internals.registered_types_cpp.end()) { | |
|             std::string tname = type_info->name(); | |
|             detail::clean_type_id(tname); | |
|             std::string msg = "Unregistered type : " + tname; | |
|             PyErr_SetString(PyExc_TypeError, msg.c_str()); | |
|             return handle(); | |
|         } | |
| 
 | |
|         auto tinfo = (const detail::type_info *) it->second; | |
| 
 | |
|         auto it_instances = internals.registered_instances.equal_range(src); | |
|         for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) { | |
|             auto instance_type = detail::get_type_info(Py_TYPE(it_i->second)); | |
|             if (instance_type && instance_type == tinfo) | |
|                 return handle((PyObject *) it_i->second).inc_ref(); | |
|         } | |
| 
 | |
|         auto inst = reinterpret_steal<object>(PyType_GenericAlloc(tinfo->type, 0)); | |
| 
 | |
|         auto wrapper = (instance<void> *) inst.ptr(); | |
| 
 | |
|         wrapper->value = nullptr; | |
|         wrapper->owned = false; | |
| 
 | |
|         switch (policy) { | |
|             case return_value_policy::automatic: | |
|             case return_value_policy::take_ownership: | |
|                 wrapper->value = src; | |
|                 wrapper->owned = true; | |
|                 break; | |
| 
 | |
|             case return_value_policy::automatic_reference: | |
|             case return_value_policy::reference: | |
|                 wrapper->value = src; | |
|                 wrapper->owned = false; | |
|                 break; | |
| 
 | |
|             case return_value_policy::copy: | |
|                 if (copy_constructor) | |
|                     wrapper->value = copy_constructor(src); | |
|                 else | |
|                     throw cast_error("return_value_policy = copy, but the " | |
|                                      "object is non-copyable!"); | |
|                 wrapper->owned = true; | |
|                 break; | |
| 
 | |
|             case return_value_policy::move: | |
|                 if (move_constructor) | |
|                     wrapper->value = move_constructor(src); | |
|                 else if (copy_constructor) | |
|                     wrapper->value = copy_constructor(src); | |
|                 else | |
|                     throw cast_error("return_value_policy = move, but the " | |
|                                      "object is neither movable nor copyable!"); | |
|                 wrapper->owned = true; | |
|                 break; | |
| 
 | |
|             case return_value_policy::reference_internal: | |
|                 wrapper->value = src; | |
|                 wrapper->owned = false; | |
|                 detail::keep_alive_impl(inst, parent); | |
|                 break; | |
| 
 | |
|             default: | |
|                 throw cast_error("unhandled return_value_policy: should not happen!"); | |
|         } | |
| 
 | |
|         tinfo->init_holder(inst.ptr(), existing_holder); | |
| 
 | |
|         internals.registered_instances.emplace(wrapper->value, inst.ptr()); | |
| 
 | |
|         return inst.release(); | |
|     } | |
| 
 | |
| protected: | |
|     const type_info *typeinfo = nullptr; | |
|     void *value = nullptr; | |
|     object temp; | |
| }; | |
| 
 | |
| /* Determine suitable casting operator */ | |
| template <typename T> | |
| using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value, | |
|     typename std::add_pointer<intrinsic_t<T>>::type, | |
|     typename std::add_lvalue_reference<intrinsic_t<T>>::type>::type; | |
| 
 | |
| // std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when | |
| // T is non-copyable, but code containing such a copy constructor fails to actually compile. | |
| template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {}; | |
| 
 | |
| // Specialization for types that appear to be copy constructible but also look like stl containers | |
| // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if | |
| // so, copy constructability depends on whether the value_type is copy constructible. | |
| template <typename Container> struct is_copy_constructible<Container, enable_if_t< | |
|         std::is_copy_constructible<Container>::value && | |
|         std::is_same<typename Container::value_type &, typename Container::reference>::value | |
|     >> : std::is_copy_constructible<typename Container::value_type> {}; | |
| 
 | |
| /// Generic type caster for objects stored on the heap | |
| template <typename type> class type_caster_base : public type_caster_generic { | |
|     using itype = intrinsic_t<type>; | |
| public: | |
|     static PYBIND11_DESCR name() { return type_descr(_<type>()); } | |
| 
 | |
|     type_caster_base() : type_caster_base(typeid(type)) { } | |
|     explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { } | |
| 
 | |
|     static handle cast(const itype &src, return_value_policy policy, handle parent) { | |
|         if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference) | |
|             policy = return_value_policy::copy; | |
|         return cast(&src, policy, parent); | |
|     } | |
| 
 | |
|     static handle cast(itype &&src, return_value_policy, handle parent) { | |
|         return cast(&src, return_value_policy::move, parent); | |
|     } | |
| 
 | |
|     static handle cast(const itype *src, return_value_policy policy, handle parent) { | |
|         return type_caster_generic::cast( | |
|             src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type), | |
|             make_copy_constructor(src), make_move_constructor(src)); | |
|     } | |
| 
 | |
|     static handle cast_holder(const itype *src, const void *holder) { | |
|         return type_caster_generic::cast( | |
|             src, return_value_policy::take_ownership, {}, | |
|             src ? &typeid(*src) : nullptr, &typeid(type), | |
|             nullptr, nullptr, holder); | |
|     } | |
| 
 | |
|     template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>; | |
| 
 | |
|     operator itype*() { return (type *) value; } | |
|     operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); } | |
| 
 | |
| protected: | |
|     typedef void *(*Constructor)(const void *stream); | |
| #if !defined(_MSC_VER) | |
|     /* Only enabled when the types are {copy,move}-constructible *and* when the type | |
|        does not have a private operator new implementaton. */ | |
|     template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) { | |
|         return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; } | |
|     template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) { | |
|         return [](const void *arg) -> void * { return (void *) new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg)))); }; } | |
| #else | |
|     /* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations. | |
|        Use a workaround that only tests for constructibility for now. */ | |
|     template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> | |
|     static Constructor make_copy_constructor(const T *value) { | |
|         return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; } | |
|     template <typename T = type, typename = enable_if_t<std::is_move_constructible<T>::value>> | |
|     static Constructor make_move_constructor(const T *value) { | |
|         return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; } | |
| #endif | |
|  | |
|     static Constructor make_copy_constructor(...) { return nullptr; } | |
|     static Constructor make_move_constructor(...) { return nullptr; } | |
| }; | |
| 
 | |
| template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { }; | |
| template <typename type> using make_caster = type_caster<intrinsic_t<type>>; | |
| 
 | |
| // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T | |
| template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) { | |
|     return caster.operator typename make_caster<T>::template cast_op_type<T>(); | |
| } | |
| template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &&caster) { | |
|     return cast_op<T>(caster); | |
| } | |
| 
 | |
| template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> { | |
| public: | |
|     static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) { | |
|         return type_caster_base<type>::cast(&src.get(), policy, parent); | |
|     } | |
|     template <typename T> using cast_op_type = std::reference_wrapper<type>; | |
|     operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); } | |
| }; | |
| 
 | |
| #define PYBIND11_TYPE_CASTER(type, py_name) \ | |
|     protected: \ | |
|         type value; \ | |
|     public: \ | |
|         static PYBIND11_DESCR name() { return type_descr(py_name); } \ | |
|         static handle cast(const type *src, return_value_policy policy, handle parent) { \ | |
|             if (!src) return none().release(); \ | |
|             return cast(*src, policy, parent); \ | |
|         } \ | |
|         operator type*() { return &value; } \ | |
|         operator type&() { return value; } \ | |
|         template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T> | |
|  | |
| 
 | |
| template <typename CharT> using is_std_char_type = any_of< | |
|     std::is_same<CharT, char>, /* std::string */ | |
|     std::is_same<CharT, char16_t>, /* std::u16string */ | |
|     std::is_same<CharT, char32_t>, /* std::u32string */ | |
|     std::is_same<CharT, wchar_t> /* std::wstring */ | |
| >; | |
| 
 | |
| template <typename T> | |
| struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> { | |
|     using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>; | |
|     using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>; | |
|     using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>; | |
| public: | |
| 
 | |
|     bool load(handle src, bool convert) { | |
|         py_type py_value; | |
| 
 | |
|         if (!src) | |
|             return false; | |
| 
 | |
|         if (std::is_floating_point<T>::value) { | |
|             if (convert || PyFloat_Check(src.ptr())) | |
|                 py_value = (py_type) PyFloat_AsDouble(src.ptr()); | |
|             else | |
|                 return false; | |
|         } else if (sizeof(T) <= sizeof(long)) { | |
|             if (PyFloat_Check(src.ptr())) | |
|                 return false; | |
|             if (std::is_signed<T>::value) | |
|                 py_value = (py_type) PyLong_AsLong(src.ptr()); | |
|             else | |
|                 py_value = (py_type) PyLong_AsUnsignedLong(src.ptr()); | |
|         } else { | |
|             if (PyFloat_Check(src.ptr())) | |
|                 return false; | |
|             if (std::is_signed<T>::value) | |
|                 py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr()); | |
|             else | |
|                 py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr()); | |
|         } | |
| 
 | |
|         if ((py_value == (py_type) -1 && PyErr_Occurred()) || | |
|             (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && | |
|                (py_value < (py_type) std::numeric_limits<T>::min() || | |
|                 py_value > (py_type) std::numeric_limits<T>::max()))) { | |
| #if PY_VERSION_HEX < 0x03000000 | |
|             bool type_error = PyErr_ExceptionMatches(PyExc_SystemError); | |
| #else | |
|             bool type_error = PyErr_ExceptionMatches(PyExc_TypeError); | |
| #endif | |
|             PyErr_Clear(); | |
|             if (type_error && convert && PyNumber_Check(src.ptr())) { | |
|                 auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value | |
|                                                       ? PyNumber_Float(src.ptr()) | |
|                                                       : PyNumber_Long(src.ptr())); | |
|                 PyErr_Clear(); | |
|                 return load(tmp, false); | |
|             } | |
|             return false; | |
|         } | |
| 
 | |
|         value = (T) py_value; | |
|         return true; | |
|     } | |
| 
 | |
|     static handle cast(T src, return_value_policy /* policy */, handle /* parent */) { | |
|         if (std::is_floating_point<T>::value) { | |
|             return PyFloat_FromDouble((double) src); | |
|         } else if (sizeof(T) <= sizeof(long)) { | |
|             if (std::is_signed<T>::value) | |
|                 return PyLong_FromLong((long) src); | |
|             else | |
|                 return PyLong_FromUnsignedLong((unsigned long) src); | |
|         } else { | |
|             if (std::is_signed<T>::value) | |
|                 return PyLong_FromLongLong((long long) src); | |
|             else | |
|                 return PyLong_FromUnsignedLongLong((unsigned long long) src); | |
|         } | |
|     } | |
| 
 | |
|     PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float")); | |
| }; | |
| 
 | |
| template<typename T> struct void_caster { | |
| public: | |
|     bool load(handle, bool) { return false; } | |
|     static handle cast(T, return_value_policy /* policy */, handle /* parent */) { | |
|         return none().inc_ref(); | |
|     } | |
|     PYBIND11_TYPE_CASTER(T, _("None")); | |
| }; | |
| 
 | |
| template <> class type_caster<void_type> : public void_caster<void_type> {}; | |
| 
 | |
| template <> class type_caster<void> : public type_caster<void_type> { | |
| public: | |
|     using type_caster<void_type>::cast; | |
| 
 | |
|     bool load(handle h, bool) { | |
|         if (!h) { | |
|             return false; | |
|         } else if (h.is_none()) { | |
|             value = nullptr; | |
|             return true; | |
|         } | |
| 
 | |
|         /* Check if this is a capsule */ | |
|         if (isinstance<capsule>(h)) { | |
|             value = reinterpret_borrow<capsule>(h); | |
|             return true; | |
|         } | |
| 
 | |
|         /* Check if this is a C++ type */ | |
|         if (get_type_info((PyTypeObject *) h.get_type().ptr())) { | |
|             value = ((instance<void> *) h.ptr())->value; | |
|             return true; | |
|         } | |
| 
 | |
|         /* Fail */ | |
|         return false; | |
|     } | |
| 
 | |
|     static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) { | |
|         if (ptr) | |
|             return capsule(ptr).release(); | |
|         else | |
|             return none().inc_ref(); | |
|     } | |
| 
 | |
|     template <typename T> using cast_op_type = void*&; | |
|     operator void *&() { return value; } | |
|     static PYBIND11_DESCR name() { return type_descr(_("capsule")); } | |
| private: | |
|     void *value = nullptr; | |
| }; | |
| 
 | |
| template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { }; | |
| 
 | |
| template <> class type_caster<bool> { | |
| public: | |
|     bool load(handle src, bool) { | |
|         if (!src) return false; | |
|         else if (src.ptr() == Py_True) { value = true; return true; } | |
|         else if (src.ptr() == Py_False) { value = false; return true; } | |
|         else return false; | |
|     } | |
|     static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) { | |
|         return handle(src ? Py_True : Py_False).inc_ref(); | |
|     } | |
|     PYBIND11_TYPE_CASTER(bool, _("bool")); | |
| }; | |
| 
 | |
| // Helper class for UTF-{8,16,32} C++ stl strings: | |
| template <typename CharT, class Traits, class Allocator> | |
| struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>> { | |
|     // Simplify life by being able to assume standard char sizes (the standard only guarantees | |
|     // minimums), but Python requires exact sizes | |
|     static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1"); | |
|     static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2"); | |
|     static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4"); | |
|     // wchar_t can be either 16 bits (Windows) or 32 (everywhere else) | |
|     static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4, | |
|             "Unsupported wchar_t size != 2/4"); | |
|     static constexpr size_t UTF_N = 8 * sizeof(CharT); | |
| 
 | |
|     using StringType = std::basic_string<CharT, Traits, Allocator>; | |
| 
 | |
|     bool load(handle src, bool) { | |
| #if PY_MAJOR_VERSION < 3 | |
|         object temp; | |
| #endif | |
|         handle load_src = src; | |
|         if (!src) { | |
|             return false; | |
|         } else if (!PyUnicode_Check(load_src.ptr())) { | |
| #if PY_MAJOR_VERSION >= 3 | |
|             return false; | |
|             // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false | |
| #else | |
|             if (!PYBIND11_BYTES_CHECK(load_src.ptr())) | |
|                 return false; | |
|             temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr())); | |
|             if (!temp) { PyErr_Clear(); return false; } | |
|             load_src = temp; | |
| #endif | |
|         } | |
| 
 | |
|         object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString( | |
|             load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr)); | |
|         if (!utfNbytes) { PyErr_Clear(); return false; } | |
| 
 | |
|         const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr())); | |
|         size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT); | |
|         if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32 | |
|         value = StringType(buffer, length); | |
|         return true; | |
|     } | |
| 
 | |
|     static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) { | |
|         const char *buffer = reinterpret_cast<const char *>(src.c_str()); | |
|         ssize_t nbytes = ssize_t(src.size() * sizeof(CharT)); | |
|         handle s = decode_utfN(buffer, nbytes); | |
|         if (!s) throw error_already_set(); | |
|         return s; | |
|     } | |
| 
 | |
|     PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME)); | |
| 
 | |
| private: | |
|     static handle decode_utfN(const char *buffer, ssize_t nbytes) { | |
| #if !defined(PYPY_VERSION) | |
|         return | |
|             UTF_N == 8  ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) : | |
|             UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) : | |
|                           PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr); | |
| #else | |
|         // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version | |
|         // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a | |
|         // non-const char * arguments, which is also a nuissance, so bypass the whole thing by just | |
|         // passing the encoding as a string value, which works properly: | |
|         return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr); | |
| #endif | |
|     } | |
| }; | |
| 
 | |
| // Type caster for C-style strings.  We basically use a std::string type caster, but also add the | |
| // ability to use None as a nullptr char* (which the string caster doesn't allow). | |
| template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> { | |
|     using StringType = std::basic_string<CharT>; | |
|     using StringCaster = type_caster<StringType>; | |
|     StringCaster str_caster; | |
|     bool none = false; | |
| public: | |
|     bool load(handle src, bool convert) { | |
|         if (!src) return false; | |
|         if (src.is_none()) { | |
|             // Defer accepting None to other overloads (if we aren't in convert mode): | |
|             if (!convert) return false; | |
|             none = true; | |
|             return true; | |
|         } | |
|         return str_caster.load(src, convert); | |
|     } | |
| 
 | |
|     static handle cast(const CharT *src, return_value_policy policy, handle parent) { | |
|         if (src == nullptr) return pybind11::none().inc_ref(); | |
|         return StringCaster::cast(StringType(src), policy, parent); | |
|     } | |
| 
 | |
|     static handle cast(CharT src, return_value_policy policy, handle parent) { | |
|         if (std::is_same<char, CharT>::value) { | |
|             handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr); | |
|             if (!s) throw error_already_set(); | |
|             return s; | |
|         } | |
|         return StringCaster::cast(StringType(1, src), policy, parent); | |
|     } | |
| 
 | |
|     operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); } | |
|     operator CharT() { | |
|         if (none) | |
|             throw value_error("Cannot convert None to a character"); | |
| 
 | |
|         auto &value = static_cast<StringType &>(str_caster); | |
|         size_t str_len = value.size(); | |
|         if (str_len == 0) | |
|             throw value_error("Cannot convert empty string to a character"); | |
| 
 | |
|         // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that | |
|         // is too high, and one for multiple unicode characters (caught later), so we need to figure | |
|         // out how long the first encoded character is in bytes to distinguish between these two | |
|         // errors.  We also allow want to allow unicode characters U+0080 through U+00FF, as those | |
|         // can fit into a single char value. | |
|         if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) { | |
|             unsigned char v0 = static_cast<unsigned char>(value[0]); | |
|             size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127 | |
|                 (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence | |
|                 (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence | |
|                 4; // 0b11110xxx - start of 4-byte sequence | |
|  | |
|             if (char0_bytes == str_len) { | |
|                 // If we have a 128-255 value, we can decode it into a single char: | |
|                 if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx | |
|                     return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F)); | |
|                 } | |
|                 // Otherwise we have a single character, but it's > U+00FF | |
|                 throw value_error("Character code point not in range(0x100)"); | |
|             } | |
|         } | |
| 
 | |
|         // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a | |
|         // surrogate pair with total length 2 instantly indicates a range error (but not a "your | |
|         // string was too long" error). | |
|         else if (StringCaster::UTF_N == 16 && str_len == 2) { | |
|             char16_t v0 = static_cast<char16_t>(value[0]); | |
|             if (v0 >= 0xD800 && v0 < 0xE000) | |
|                 throw value_error("Character code point not in range(0x10000)"); | |
|         } | |
| 
 | |
|         if (str_len != 1) | |
|             throw value_error("Expected a character, but multi-character string found"); | |
| 
 | |
|         return value[0]; | |
|     } | |
| 
 | |
|     static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); } | |
|     template <typename _T> using cast_op_type = typename std::remove_reference<pybind11::detail::cast_op_type<_T>>::type; | |
| }; | |
| 
 | |
| template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> { | |
|     typedef std::pair<T1, T2> type; | |
| public: | |
|     bool load(handle src, bool convert) { | |
|         if (!isinstance<sequence>(src)) | |
|             return false; | |
|         const auto seq = reinterpret_borrow<sequence>(src); | |
|         if (seq.size() != 2) | |
|             return false; | |
|         return first.load(seq[0], convert) && second.load(seq[1], convert); | |
|     } | |
| 
 | |
|     static handle cast(const type &src, return_value_policy policy, handle parent) { | |
|         auto o1 = reinterpret_steal<object>(make_caster<T1>::cast(src.first, policy, parent)); | |
|         auto o2 = reinterpret_steal<object>(make_caster<T2>::cast(src.second, policy, parent)); | |
|         if (!o1 || !o2) | |
|             return handle(); | |
|         tuple result(2); | |
|         PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr()); | |
|         PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr()); | |
|         return result.release(); | |
|     } | |
| 
 | |
|     static PYBIND11_DESCR name() { | |
|         return type_descr( | |
|             _("Tuple[") + make_caster<T1>::name() + _(", ") + make_caster<T2>::name() + _("]") | |
|         ); | |
|     } | |
| 
 | |
|     template <typename T> using cast_op_type = type; | |
| 
 | |
|     operator type() { | |
|         return type(cast_op<T1>(first), cast_op<T2>(second)); | |
|     } | |
| protected: | |
|     make_caster<T1> first; | |
|     make_caster<T2> second; | |
| }; | |
| 
 | |
| template <typename... Tuple> class type_caster<std::tuple<Tuple...>> { | |
|     using type = std::tuple<Tuple...>; | |
|     using indices = make_index_sequence<sizeof...(Tuple)>; | |
|     static constexpr auto size = sizeof...(Tuple); | |
| 
 | |
| public: | |
|     bool load(handle src, bool convert) { | |
|         if (!isinstance<sequence>(src)) | |
|             return false; | |
|         const auto seq = reinterpret_borrow<sequence>(src); | |
|         if (seq.size() != size) | |
|             return false; | |
|         return load_impl(seq, convert, indices{}); | |
|     } | |
| 
 | |
|     static handle cast(const type &src, return_value_policy policy, handle parent) { | |
|         return cast_impl(src, policy, parent, indices{}); | |
|     } | |
| 
 | |
|     static PYBIND11_DESCR name() { | |
|         return type_descr(_("Tuple[") + detail::concat(make_caster<Tuple>::name()...) + _("]")); | |
|     } | |
| 
 | |
|     template <typename T> using cast_op_type = type; | |
| 
 | |
|     operator type() { return implicit_cast(indices{}); } | |
| 
 | |
| protected: | |
|     template <size_t... Is> | |
|     type implicit_cast(index_sequence<Is...>) { return type(cast_op<Tuple>(std::get<Is>(value))...); } | |
| 
 | |
|     static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; } | |
| 
 | |
|     template <size_t... Is> | |
|     bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) { | |
|         for (bool r : {std::get<Is>(value).load(seq[Is], convert)...}) | |
|             if (!r) | |
|                 return false; | |
|         return true; | |
|     } | |
| 
 | |
|     static handle cast_impl(const type &, return_value_policy, handle, | |
|                             index_sequence<>) { return tuple().release(); } | |
| 
 | |
|     /* Implementation: Convert a C++ tuple into a Python tuple */ | |
|     template <size_t... Is> | |
|     static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence<Is...>) { | |
|         std::array<object, size> entries {{ | |
|             reinterpret_steal<object>(make_caster<Tuple>::cast(std::get<Is>(src), policy, parent))... | |
|         }}; | |
|         for (const auto &entry: entries) | |
|             if (!entry) | |
|                 return handle(); | |
|         tuple result(size); | |
|         int counter = 0; | |
|         for (auto & entry: entries) | |
|             PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr()); | |
|         return result.release(); | |
|     } | |
| 
 | |
|     std::tuple<make_caster<Tuple>...> value; | |
| }; | |
| 
 | |
| /// Helper class which abstracts away certain actions. Users can provide specializations for | |
| /// custom holders, but it's only necessary if the type has a non-standard interface. | |
| template <typename T> | |
| struct holder_helper { | |
|     static auto get(const T &p) -> decltype(p.get()) { return p.get(); } | |
| }; | |
| 
 | |
| /// Type caster for holder types like std::shared_ptr, etc. | |
| template <typename type, typename holder_type> | |
| struct copyable_holder_caster : public type_caster_base<type> { | |
| public: | |
|     using base = type_caster_base<type>; | |
|     using base::base; | |
|     using base::cast; | |
|     using base::typeinfo; | |
|     using base::value; | |
|     using base::temp; | |
| 
 | |
|     PYBIND11_NOINLINE bool load(handle src, bool convert) { | |
|         return load(src, convert, Py_TYPE(src.ptr())); | |
|     } | |
| 
 | |
|     bool load(handle src, bool convert, PyTypeObject *tobj) { | |
|         if (!src || !typeinfo) | |
|             return false; | |
|         if (src.is_none()) { | |
|             value = nullptr; | |
|             return true; | |
|         } | |
| 
 | |
|         if (typeinfo->default_holder) | |
|             throw cast_error("Unable to load a custom holder type from a default-holder instance"); | |
| 
 | |
|         if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */ | |
|             /* Check if we can safely perform a reinterpret-style cast */ | |
|             if (PyType_IsSubtype(tobj, typeinfo->type)) | |
|                 return load_value_and_holder(src); | |
|         } else { /* Case 2: multiple inheritance */ | |
|             /* Check if we can safely perform a reinterpret-style cast */ | |
|             if (tobj == typeinfo->type) | |
|                 return load_value_and_holder(src); | |
| 
 | |
|             /* If this is a python class, also check the parents recursively */ | |
|             auto const &type_dict = get_internals().registered_types_py; | |
|             bool new_style_class = PyType_Check((PyObject *) tobj); | |
|             if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) { | |
|                 auto parents = reinterpret_borrow<tuple>(tobj->tp_bases); | |
|                 for (handle parent : parents) { | |
|                     bool result = load(src, convert, (PyTypeObject *) parent.ptr()); | |
|                     if (result) | |
|                         return true; | |
|                 } | |
|             } | |
| 
 | |
|             if (try_implicit_casts(src, convert)) | |
|                 return true; | |
|         } | |
| 
 | |
|         if (convert) { | |
|             for (auto &converter : typeinfo->implicit_conversions) { | |
|                 temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type)); | |
|                 if (load(temp, false)) | |
|                     return true; | |
|             } | |
|         } | |
| 
 | |
|         return false; | |
|     } | |
| 
 | |
|     bool load_value_and_holder(handle src) { | |
|         auto inst = (instance<type, holder_type> *) src.ptr(); | |
|         value = (void *) inst->value; | |
|         if (inst->holder_constructed) { | |
|             holder = inst->holder; | |
|             return true; | |
|         } else { | |
|             throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) " | |
| #if defined(NDEBUG) | |
|                              "(compile in debug mode for type information)"); | |
| #else | |
|                              "of type '" + type_id<holder_type>() + "''"); | |
| #endif | |
|         } | |
|     } | |
| 
 | |
|     template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0> | |
|     bool try_implicit_casts(handle, bool) { return false; } | |
| 
 | |
|     template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0> | |
|     bool try_implicit_casts(handle src, bool convert) { | |
|         for (auto &cast : typeinfo->implicit_casts) { | |
|             copyable_holder_caster sub_caster(*cast.first); | |
|             if (sub_caster.load(src, convert)) { | |
|                 value = cast.second(sub_caster.value); | |
|                 holder = holder_type(sub_caster.holder, (type *) value); | |
|                 return true; | |
|             } | |
|         } | |
|         return false; | |
|     } | |
| 
 | |
|     explicit operator type*() { return this->value; } | |
|     explicit operator type&() { return *(this->value); } | |
|     explicit operator holder_type*() { return &holder; } | |
| 
 | |
|     // Workaround for Intel compiler bug | |
|     // see pybind11 issue 94 | |
|     #if defined(__ICC) || defined(__INTEL_COMPILER) | |
|     operator holder_type&() { return holder; } | |
|     #else | |
|     explicit operator holder_type&() { return holder; } | |
|     #endif | |
|  | |
|     static handle cast(const holder_type &src, return_value_policy, handle) { | |
|         const auto *ptr = holder_helper<holder_type>::get(src); | |
|         return type_caster_base<type>::cast_holder(ptr, &src); | |
|     } | |
| 
 | |
| protected: | |
|     holder_type holder; | |
| }; | |
| 
 | |
| /// Specialize for the common std::shared_ptr, so users don't need to | |
| template <typename T> | |
| class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { }; | |
| 
 | |
| template <typename type, typename holder_type> | |
| struct move_only_holder_caster { | |
|     static handle cast(holder_type &&src, return_value_policy, handle) { | |
|         auto *ptr = holder_helper<holder_type>::get(src); | |
|         return type_caster_base<type>::cast_holder(ptr, &src); | |
|     } | |
|     static PYBIND11_DESCR name() { return type_caster_base<type>::name(); } | |
| }; | |
| 
 | |
| template <typename type, typename deleter> | |
| class type_caster<std::unique_ptr<type, deleter>> | |
|     : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { }; | |
| 
 | |
| template <typename type, typename holder_type> | |
| using type_caster_holder = conditional_t<std::is_copy_constructible<holder_type>::value, | |
|                                          copyable_holder_caster<type, holder_type>, | |
|                                          move_only_holder_caster<type, holder_type>>; | |
| 
 | |
| template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; }; | |
| 
 | |
| /// Create a specialization for custom holder types (silently ignores std::shared_ptr) | |
| #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \ | |
|     namespace pybind11 { namespace detail { \ | |
|     template <typename type> \ | |
|     struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \ | |
|     template <typename type> \ | |
|     class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \ | |
|         : public type_caster_holder<type, holder_type> { }; \ | |
|     }} | |
|  | |
| // PYBIND11_DECLARE_HOLDER_TYPE holder types: | |
| template <typename base, typename holder> struct is_holder_type : | |
|     std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {}; | |
| // Specialization for always-supported unique_ptr holders: | |
| template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> : | |
|     std::true_type {}; | |
| 
 | |
| template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } }; | |
| template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } }; | |
| template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } }; | |
| template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } }; | |
| 
 | |
| template <typename type> | |
| struct pyobject_caster { | |
|     template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0> | |
|     bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); } | |
| 
 | |
|     template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0> | |
|     bool load(handle src, bool /* convert */) { | |
|         if (!isinstance<type>(src)) | |
|             return false; | |
|         value = reinterpret_borrow<type>(src); | |
|         return true; | |
|     } | |
| 
 | |
|     static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { | |
|         return src.inc_ref(); | |
|     } | |
|     PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name()); | |
| }; | |
| 
 | |
| template <typename T> | |
| class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { }; | |
| 
 | |
| // Our conditions for enabling moving are quite restrictive: | |
| // At compile time: | |
| // - T needs to be a non-const, non-pointer, non-reference type | |
| // - type_caster<T>::operator T&() must exist | |
| // - the type must be move constructible (obviously) | |
| // At run-time: | |
| // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it | |
| //   must have ref_count() == 1)h | |
| // If any of the above are not satisfied, we fall back to copying. | |
| template <typename T> using move_is_plain_type = satisfies_none_of<T, | |
|     std::is_void, std::is_pointer, std::is_reference, std::is_const | |
| >; | |
| template <typename T, typename SFINAE = void> struct move_always : std::false_type {}; | |
| template <typename T> struct move_always<T, enable_if_t<all_of< | |
|     move_is_plain_type<T>, | |
|     negation<std::is_copy_constructible<T>>, | |
|     std::is_move_constructible<T>, | |
|     std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&> | |
| >::value>> : std::true_type {}; | |
| template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {}; | |
| template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of< | |
|     move_is_plain_type<T>, | |
|     negation<move_always<T>>, | |
|     std::is_move_constructible<T>, | |
|     std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&> | |
| >::value>> : std::true_type {}; | |
| template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>; | |
| 
 | |
| // Detect whether returning a `type` from a cast on type's type_caster is going to result in a | |
| // reference or pointer to a local variable of the type_caster.  Basically, only | |
| // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe; | |
| // everything else returns a reference/pointer to a local variable. | |
| template <typename type> using cast_is_temporary_value_reference = bool_constant< | |
|     (std::is_reference<type>::value || std::is_pointer<type>::value) && | |
|     !std::is_base_of<type_caster_generic, make_caster<type>>::value | |
| >; | |
| 
 | |
| // When a value returned from a C++ function is being cast back to Python, we almost always want to | |
| // force `policy = move`, regardless of the return value policy the function/method was declared | |
| // with.  Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by | |
| // specializing this struct. | |
| template <typename Return, typename SFINAE = void> struct return_value_policy_override { | |
|     static return_value_policy policy(return_value_policy p) { | |
|         return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value | |
|             ? return_value_policy::move : p; | |
|     } | |
| }; | |
| 
 | |
| // Basic python -> C++ casting; throws if casting fails | |
| template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) { | |
|     if (!conv.load(handle, true)) { | |
| #if defined(NDEBUG) | |
|         throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)"); | |
| #else | |
|         throw cast_error("Unable to cast Python instance of type " + | |
|             (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''"); | |
| #endif | |
|     } | |
|     return conv; | |
| } | |
| // Wrapper around the above that also constructs and returns a type_caster | |
| template <typename T> make_caster<T> load_type(const handle &handle) { | |
|     make_caster<T> conv; | |
|     load_type(conv, handle); | |
|     return conv; | |
| } | |
| 
 | |
| NAMESPACE_END(detail) | |
| 
 | |
| // pytype -> C++ type | |
| template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> | |
| T cast(const handle &handle) { | |
|     using namespace detail; | |
|     static_assert(!cast_is_temporary_value_reference<T>::value, | |
|             "Unable to cast type to reference: value is local to type caster"); | |
|     return cast_op<T>(load_type<T>(handle)); | |
| } | |
| 
 | |
| // pytype -> pytype (calls converting constructor) | |
| template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0> | |
| T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); } | |
| 
 | |
| // C++ type -> py::object | |
| template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0> | |
| object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference, | |
|             handle parent = handle()) { | |
|     if (policy == return_value_policy::automatic) | |
|         policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy; | |
|     else if (policy == return_value_policy::automatic_reference) | |
|         policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy; | |
|     return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent)); | |
| } | |
| 
 | |
| template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); } | |
| template <> inline void handle::cast() const { return; } | |
| 
 | |
| template <typename T> | |
| detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) { | |
|     if (obj.ref_count() > 1) | |
| #if defined(NDEBUG) | |
|         throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references" | |
|             " (compile in debug mode for details)"); | |
| #else | |
|         throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) + | |
|                 " instance to C++ " + type_id<T>() + " instance: instance has multiple references"); | |
| #endif | |
|  | |
|     // Move into a temporary and return that, because the reference may be a local value of `conv` | |
|     T ret = std::move(detail::load_type<T>(obj).operator T&()); | |
|     return ret; | |
| } | |
| 
 | |
| // Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does: | |
| // - If we have to move (because T has no copy constructor), do it.  This will fail if the moved | |
| //   object has multiple references, but trying to copy will fail to compile. | |
| // - If both movable and copyable, check ref count: if 1, move; otherwise copy | |
| // - Otherwise (not movable), copy. | |
| template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) { | |
|     return move<T>(std::move(object)); | |
| } | |
| template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) { | |
|     if (object.ref_count() > 1) | |
|         return cast<T>(object); | |
|     else | |
|         return move<T>(std::move(object)); | |
| } | |
| template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) { | |
|     return cast<T>(object); | |
| } | |
| 
 | |
| template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); } | |
| template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); } | |
| template <> inline void object::cast() const & { return; } | |
| template <> inline void object::cast() && { return; } | |
| 
 | |
| NAMESPACE_BEGIN(detail) | |
| 
 | |
| // Declared in pytypes.h: | |
| template <typename T, enable_if_t<!is_pyobject<T>::value, int>> | |
| object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); } | |
| 
 | |
| struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro | |
| template <typename ret_type> using overload_caster_t = conditional_t< | |
|     cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>; | |
| 
 | |
| // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then | |
| // store the result in the given variable.  For other types, this is a no-op. | |
| template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) { | |
|     return cast_op<T>(load_type(caster, o)); | |
| } | |
| template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) { | |
|     pybind11_fail("Internal error: cast_ref fallback invoked"); } | |
| 
 | |
| // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even | |
| // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in | |
| // cases where pybind11::cast is valid. | |
| template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) { | |
|     return pybind11::cast<T>(std::move(o)); } | |
| template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) { | |
|     pybind11_fail("Internal error: cast_safe fallback invoked"); } | |
| template <> inline void cast_safe<void>(object &&) {} | |
| 
 | |
| NAMESPACE_END(detail) | |
| 
 | |
| template <return_value_policy policy = return_value_policy::automatic_reference, | |
|           typename... Args> tuple make_tuple(Args&&... args_) { | |
|     const size_t size = sizeof...(Args); | |
|     std::array<object, size> args { | |
|         { reinterpret_steal<object>(detail::make_caster<Args>::cast( | |
|             std::forward<Args>(args_), policy, nullptr))... } | |
|     }; | |
|     for (auto &arg_value : args) { | |
|         if (!arg_value) { | |
| #if defined(NDEBUG) | |
|             throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)"); | |
| #else | |
|             throw cast_error("make_tuple(): unable to convert arguments of types '" + | |
|                 (std::string) type_id<std::tuple<Args...>>() + "' to Python object"); | |
| #endif | |
|         } | |
|     } | |
|     tuple result(size); | |
|     int counter = 0; | |
|     for (auto &arg_value : args) | |
|         PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr()); | |
|     return result; | |
| } | |
| 
 | |
| /// \ingroup annotations | |
| /// Annotation for arguments | |
| struct arg { | |
|     /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument. | |
|     constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false) { } | |
|     /// Assign a value to this argument | |
|     template <typename T> arg_v operator=(T &&value) const; | |
|     /// Indicate that the type should not be converted in the type caster | |
|     arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; } | |
| 
 | |
|     const char *name; ///< If non-null, this is a named kwargs argument | |
|     bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!) | |
| }; | |
| 
 | |
| /// \ingroup annotations | |
| /// Annotation for arguments with values | |
| struct arg_v : arg { | |
| private: | |
|     template <typename T> | |
|     arg_v(arg &&base, T &&x, const char *descr = nullptr) | |
|         : arg(base), | |
|           value(reinterpret_steal<object>( | |
|               detail::make_caster<T>::cast(x, return_value_policy::automatic, {}) | |
|           )), | |
|           descr(descr) | |
| #if !defined(NDEBUG) | |
|         , type(type_id<T>()) | |
| #endif | |
|     { } | |
| 
 | |
| public: | |
|     /// Direct construction with name, default, and description | |
|     template <typename T> | |
|     arg_v(const char *name, T &&x, const char *descr = nullptr) | |
|         : arg_v(arg(name), std::forward<T>(x), descr) { } | |
| 
 | |
|     /// Called internally when invoking `py::arg("a") = value` | |
|     template <typename T> | |
|     arg_v(const arg &base, T &&x, const char *descr = nullptr) | |
|         : arg_v(arg(base), std::forward<T>(x), descr) { } | |
| 
 | |
|     /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg& | |
|     arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; } | |
| 
 | |
|     /// The default value | |
|     object value; | |
|     /// The (optional) description of the default value | |
|     const char *descr; | |
| #if !defined(NDEBUG) | |
|     /// The C++ type name of the default value (only available when compiled in debug mode) | |
|     std::string type; | |
| #endif | |
| }; | |
| 
 | |
| template <typename T> | |
| arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; } | |
| 
 | |
| /// Alias for backward compatibility -- to be removed in version 2.0 | |
| template <typename /*unused*/> using arg_t = arg_v; | |
| 
 | |
| inline namespace literals { | |
| /** \rst | |
|     String literal version of `arg` | |
|  \endrst */ | |
| constexpr arg operator"" _a(const char *name, size_t) { return arg(name); } | |
| } | |
| 
 | |
| NAMESPACE_BEGIN(detail) | |
| 
 | |
| // forward declaration | |
| struct function_record; | |
| 
 | |
| /// Internal data associated with a single function call | |
| struct function_call { | |
|     function_call(function_record &f, handle p); // Implementation in attr.h | |
|  | |
|     /// The function data: | |
|     const function_record &func; | |
| 
 | |
|     /// Arguments passed to the function: | |
|     std::vector<handle> args; | |
| 
 | |
|     /// The `convert` value the arguments should be loaded with | |
|     std::vector<bool> args_convert; | |
| 
 | |
|     /// The parent, if any | |
|     handle parent; | |
| }; | |
| 
 | |
| 
 | |
| /// Helper class which loads arguments for C++ functions called from Python | |
| template <typename... Args> | |
| class argument_loader { | |
|     using indices = make_index_sequence<sizeof...(Args)>; | |
| 
 | |
|     template <typename Arg> using argument_is_args   = std::is_same<intrinsic_t<Arg>, args>; | |
|     template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>; | |
|     // Get args/kwargs argument positions relative to the end of the argument list: | |
|     static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args), | |
|                         kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args); | |
| 
 | |
|     static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1; | |
| 
 | |
|     static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function"); | |
| 
 | |
| public: | |
|     static constexpr bool has_kwargs = kwargs_pos < 0; | |
|     static constexpr bool has_args = args_pos < 0; | |
| 
 | |
|     static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); } | |
| 
 | |
|     bool load_args(function_call &call) { | |
|         return load_impl_sequence(call, indices{}); | |
|     } | |
| 
 | |
|     template <typename Return, typename Func> | |
|     enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) { | |
|         return call_impl<Return>(std::forward<Func>(f), indices{}); | |
|     } | |
| 
 | |
|     template <typename Return, typename Func> | |
|     enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) { | |
|         call_impl<Return>(std::forward<Func>(f), indices{}); | |
|         return void_type(); | |
|     } | |
| 
 | |
| private: | |
| 
 | |
|     static bool load_impl_sequence(function_call &, index_sequence<>) { return true; } | |
| 
 | |
|     template <size_t... Is> | |
|     bool load_impl_sequence(function_call &call, index_sequence<Is...>) { | |
|         for (bool r : {std::get<Is>(value).load(call.args[Is], call.args_convert[Is])...}) | |
|             if (!r) | |
|                 return false; | |
|         return true; | |
|     } | |
| 
 | |
|     template <typename Return, typename Func, size_t... Is> | |
|     Return call_impl(Func &&f, index_sequence<Is...>) { | |
|         return std::forward<Func>(f)(cast_op<Args>(std::get<Is>(value))...); | |
|     } | |
| 
 | |
|     std::tuple<make_caster<Args>...> value; | |
| }; | |
| 
 | |
| /// Helper class which collects only positional arguments for a Python function call. | |
| /// A fancier version below can collect any argument, but this one is optimal for simple calls. | |
| template <return_value_policy policy> | |
| class simple_collector { | |
| public: | |
|     template <typename... Ts> | |
|     explicit simple_collector(Ts &&...values) | |
|         : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { } | |
| 
 | |
|     const tuple &args() const & { return m_args; } | |
|     dict kwargs() const { return {}; } | |
| 
 | |
|     tuple args() && { return std::move(m_args); } | |
| 
 | |
|     /// Call a Python function and pass the collected arguments | |
|     object call(PyObject *ptr) const { | |
|         PyObject *result = PyObject_CallObject(ptr, m_args.ptr()); | |
|         if (!result) | |
|             throw error_already_set(); | |
|         return reinterpret_steal<object>(result); | |
|     } | |
| 
 | |
| private: | |
|     tuple m_args; | |
| }; | |
| 
 | |
| /// Helper class which collects positional, keyword, * and ** arguments for a Python function call | |
| template <return_value_policy policy> | |
| class unpacking_collector { | |
| public: | |
|     template <typename... Ts> | |
|     explicit unpacking_collector(Ts &&...values) { | |
|         // Tuples aren't (easily) resizable so a list is needed for collection, | |
|         // but the actual function call strictly requires a tuple. | |
|         auto args_list = list(); | |
|         int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... }; | |
|         ignore_unused(_); | |
| 
 | |
|         m_args = std::move(args_list); | |
|     } | |
| 
 | |
|     const tuple &args() const & { return m_args; } | |
|     const dict &kwargs() const & { return m_kwargs; } | |
| 
 | |
|     tuple args() && { return std::move(m_args); } | |
|     dict kwargs() && { return std::move(m_kwargs); } | |
| 
 | |
|     /// Call a Python function and pass the collected arguments | |
|     object call(PyObject *ptr) const { | |
|         PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr()); | |
|         if (!result) | |
|             throw error_already_set(); | |
|         return reinterpret_steal<object>(result); | |
|     } | |
| 
 | |
| private: | |
|     template <typename T> | |
|     void process(list &args_list, T &&x) { | |
|         auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {})); | |
|         if (!o) { | |
| #if defined(NDEBUG) | |
|             argument_cast_error(); | |
| #else | |
|             argument_cast_error(std::to_string(args_list.size()), type_id<T>()); | |
| #endif | |
|         } | |
|         args_list.append(o); | |
|     } | |
| 
 | |
|     void process(list &args_list, detail::args_proxy ap) { | |
|         for (const auto &a : ap) | |
|             args_list.append(a); | |
|     } | |
| 
 | |
|     void process(list &/*args_list*/, arg_v a) { | |
|         if (!a.name) | |
| #if defined(NDEBUG) | |
|             nameless_argument_error(); | |
| #else | |
|             nameless_argument_error(a.type); | |
| #endif | |
|  | |
|         if (m_kwargs.contains(a.name)) { | |
| #if defined(NDEBUG) | |
|             multiple_values_error(); | |
| #else | |
|             multiple_values_error(a.name); | |
| #endif | |
|         } | |
|         if (!a.value) { | |
| #if defined(NDEBUG) | |
|             argument_cast_error(); | |
| #else | |
|             argument_cast_error(a.name, a.type); | |
| #endif | |
|         } | |
|         m_kwargs[a.name] = a.value; | |
|     } | |
| 
 | |
|     void process(list &/*args_list*/, detail::kwargs_proxy kp) { | |
|         if (!kp) | |
|             return; | |
|         for (const auto &k : reinterpret_borrow<dict>(kp)) { | |
|             if (m_kwargs.contains(k.first)) { | |
| #if defined(NDEBUG) | |
|                 multiple_values_error(); | |
| #else | |
|                 multiple_values_error(str(k.first)); | |
| #endif | |
|             } | |
|             m_kwargs[k.first] = k.second; | |
|         } | |
|     } | |
| 
 | |
|     [[noreturn]] static void nameless_argument_error() { | |
|         throw type_error("Got kwargs without a name; only named arguments " | |
|                          "may be passed via py::arg() to a python function call. " | |
|                          "(compile in debug mode for details)"); | |
|     } | |
|     [[noreturn]] static void nameless_argument_error(std::string type) { | |
|         throw type_error("Got kwargs without a name of type '" + type + "'; only named " | |
|                          "arguments may be passed via py::arg() to a python function call. "); | |
|     } | |
|     [[noreturn]] static void multiple_values_error() { | |
|         throw type_error("Got multiple values for keyword argument " | |
|                          "(compile in debug mode for details)"); | |
|     } | |
| 
 | |
|     [[noreturn]] static void multiple_values_error(std::string name) { | |
|         throw type_error("Got multiple values for keyword argument '" + name + "'"); | |
|     } | |
| 
 | |
|     [[noreturn]] static void argument_cast_error() { | |
|         throw cast_error("Unable to convert call argument to Python object " | |
|                          "(compile in debug mode for details)"); | |
|     } | |
| 
 | |
|     [[noreturn]] static void argument_cast_error(std::string name, std::string type) { | |
|         throw cast_error("Unable to convert call argument '" + name | |
|                          + "' of type '" + type + "' to Python object"); | |
|     } | |
| 
 | |
| private: | |
|     tuple m_args; | |
|     dict m_kwargs; | |
| }; | |
| 
 | |
| /// Collect only positional arguments for a Python function call | |
| template <return_value_policy policy, typename... Args, | |
|           typename = enable_if_t<all_of<is_positional<Args>...>::value>> | |
| simple_collector<policy> collect_arguments(Args &&...args) { | |
|     return simple_collector<policy>(std::forward<Args>(args)...); | |
| } | |
| 
 | |
| /// Collect all arguments, including keywords and unpacking (only instantiated when needed) | |
| template <return_value_policy policy, typename... Args, | |
|           typename = enable_if_t<!all_of<is_positional<Args>...>::value>> | |
| unpacking_collector<policy> collect_arguments(Args &&...args) { | |
|     // Following argument order rules for generalized unpacking according to PEP 448 | |
|     static_assert( | |
|         constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>() | |
|         && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(), | |
|         "Invalid function call: positional args must precede keywords and ** unpacking; " | |
|         "* unpacking must precede ** unpacking" | |
|     ); | |
|     return unpacking_collector<policy>(std::forward<Args>(args)...); | |
| } | |
| 
 | |
| template <typename Derived> | |
| template <return_value_policy policy, typename... Args> | |
| object object_api<Derived>::operator()(Args &&...args) const { | |
|     return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr()); | |
| } | |
| 
 | |
| template <typename Derived> | |
| template <return_value_policy policy, typename... Args> | |
| object object_api<Derived>::call(Args &&...args) const { | |
|     return operator()<policy>(std::forward<Args>(args)...); | |
| } | |
| 
 | |
| NAMESPACE_END(detail) | |
| 
 | |
| #define PYBIND11_MAKE_OPAQUE(Type) \ | |
|     namespace pybind11 { namespace detail { \ | |
|         template<> class type_caster<Type> : public type_caster_base<Type> { }; \ | |
|     }} | |
|  | |
| NAMESPACE_END(pybind11)
 |