You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							64 lines
						
					
					
						
							2.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							64 lines
						
					
					
						
							2.2 KiB
						
					
					
				
								import stormpy
							 | 
						|
								import stormpy.core
							 | 
						|
								import stormpy.simulator
							 | 
						|
								
							 | 
						|
								import stormpy.shields
							 | 
						|
								
							 | 
						|
								import stormpy.examples
							 | 
						|
								import stormpy.examples.files
							 | 
						|
								
							 | 
						|
								import random
							 | 
						|
								
							 | 
						|
								"""
							 | 
						|
								Simulating a model with the usage of a pre shield
							 | 
						|
								"""
							 | 
						|
								
							 | 
						|
								def example_pre_shield_simulator():
							 | 
						|
								    path = stormpy.examples.files.prism_mdp_cliff_walking
							 | 
						|
								    formula_str = "Pmax=? [G !\"AgentIsInLavaAndNotDone\"]"
							 | 
						|
								
							 | 
						|
								    program = stormpy.parse_prism_program(path)
							 | 
						|
								    formulas = stormpy.parse_properties_for_prism_program(formula_str, program)
							 | 
						|
								
							 | 
						|
								    options = stormpy.BuilderOptions([p.raw_formula for p in formulas])
							 | 
						|
								    options.set_build_state_valuations(True)
							 | 
						|
								    options.set_build_choice_labels(True)
							 | 
						|
								    options.set_build_all_labels()
							 | 
						|
								    model = stormpy.build_sparse_model_with_options(program, options)
							 | 
						|
								
							 | 
						|
								    initial_state = model.initial_states[0]
							 | 
						|
								    assert initial_state == 0
							 | 
						|
								    
							 | 
						|
								    shield_specification = stormpy.logic.ShieldExpression(stormpy.logic.ShieldingType.PRE_SAFETY, stormpy.logic.ShieldComparison.RELATIVE, 0.9) 
							 | 
						|
								    result = stormpy.model_checking(model, formulas[0], extract_scheduler=True, shield_expression=shield_specification)
							 | 
						|
								    
							 | 
						|
								    assert result.has_scheduler
							 | 
						|
								    assert result.has_shield
							 | 
						|
								    
							 | 
						|
								    shield = result.shield
							 | 
						|
								
							 | 
						|
								    pre_scheduler = shield.construct()
							 | 
						|
								
							 | 
						|
								    simulator = stormpy.simulator.create_simulator(model, seed=42)
							 | 
						|
								
							 | 
						|
								    while not simulator.is_done():
							 | 
						|
								        current_state = simulator.get_current_state()
							 | 
						|
								        state_string = model.state_valuations.get_string(current_state)
							 | 
						|
								        print(F"Simulator is in state {state_string}.")
							 | 
						|
								        choices = [x for x in pre_scheduler.get_choice(current_state).choice_map if x[0] > 0]
							 | 
						|
								        choice_labels =  [model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, choice[1])) for choice in choices]
							 | 
						|
								        
							 | 
						|
								        if not choices:
							 | 
						|
								            break
							 | 
						|
								
							 | 
						|
								        index = random.randint(0, len(choices) - 1)
							 | 
						|
								        selected_action = choices[index]
							 | 
						|
								        choice_label = model.choice_labeling.get_labels_of_choice(model.get_choice_index(current_state, selected_action[1]))
							 | 
						|
								        print(F"Allowed Choices are {choice_labels}. Selected Action: {choice_label}")
							 | 
						|
								        observation, reward = simulator.step(selected_action[1])
							 | 
						|
								
							 | 
						|
								        
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								if __name__ == '__main__':
							 | 
						|
								    example_pre_shield_simulator()
							 |