103 lines
3.2 KiB

**************************************
Continuous-time Markov chains (CTMCs)
**************************************
.. check if the following doctest should be run (and hide it in Sphinx)
>>> # Skip tests if numpy is not available
>>> import pytest
>>> try:
... import numpy as np
... except ModuleNotFoundError:
... np = None
>>> if np is None:
... pytest.skip("skipping the doctest below since it's not going to work.")
Background
=====================
In this section, we explain how Stormpy can be used to build a simple CTMC.
Building CTMCs works similar to building DTMCs as in :doc:`building_dtmcs`, but additionally every state is equipped with an exit rate.
.. seealso:: `01-building-ctmcs.py <https://github.com/moves-rwth/stormpy/blob/master/examples/building_ctmcs/01-building-ctmcs.py>`_
First, we import Stormpy::
>>> import stormpy
Transition Matrix
=====================
In this example, we build the transition matrix using a numpy array
>>> import numpy as np
>>> transitions = np.array([
... [0, 1.5, 0, 0],
... [3, 0, 1.5, 0],
... [0, 3, 0, 1.5],
... [0, 0, 3, 0], ], dtype='float64')
The following function call returns a sparse matrix with default row groups::
>>> transition_matrix = stormpy.build_sparse_matrix(transitions)
>>> print(transition_matrix) # doctest: +SKIP
0 1 2 3
---- group 0/3 ----
0 ( 0 1.5 0 0 ) 0
---- group 1/3 ----
1 ( 3 0 1.5 0 ) 1
---- group 2/3 ----
2 ( 0 3 0 1.5 ) 2
---- group 3/3 ----
3 ( 0 0 3 0 ) 3
0 1 2 3
Labeling
================
The state labeling is created analogously to the previous example in :ref:`building DTMCs<doc/models/building_dtmcs:Labeling>`::
>>> state_labeling = stormpy.storage.StateLabeling(4)
>>> state_labels = {'empty', 'init', 'deadlock', 'full'}
>>> for label in state_labels:
... state_labeling.add_label(label)
>>> state_labeling.add_label_to_state('init', 0)
>>> state_labeling.add_label_to_state('empty', 0)
>>> state_labeling.add_label_to_state('full', 3)
Exit Rates
====================
Lastly, we initialize a list to equip every state with an exit rate::
>>> exit_rates = [1.5, 4.5, 4.5, 3.0]
Building the Model
====================
Now, we can collect all components, including the choice labeling and the exit rates.
To let the transition values be interpreted as rates we set `rate_transitions` to `True`::
>>> components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling, rate_transitions=True)
>>> components.exit_rates = exit_rates
And finally, we can build the model::
>>> ctmc = stormpy.storage.SparseCtmc(components)
>>> print(ctmc) # doctest: +SKIP
--------------------------------------------------------------
Model type: CTMC (sparse)
States: 4
Transitions: 6
Reward Models: none
State Labels: 4 labels
* init -> 1 item(s)
* empty -> 1 item(s)
* deadlock -> 0 item(s)
* full -> 1 item(s)
Choice Labels: none
--------------------------------------------------------------