You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							131 lines
						
					
					
						
							6.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							131 lines
						
					
					
						
							6.3 KiB
						
					
					
				| import stormpy | |
| import stormpy.logic | |
| from helpers.helper import get_example_path | |
| 
 | |
| import math | |
| 
 | |
| 
 | |
| class TestTransformation: | |
| 
 | |
|     def test_transform_symbolic_dtmc_to_sparse(self): | |
|         program = stormpy.parse_prism_program(get_example_path("dtmc", "crowds5_5.pm")) | |
|         symbolic_model = stormpy.build_symbolic_model(program) | |
|         assert symbolic_model.nr_states == 8607 | |
|         assert symbolic_model.nr_transitions == 15113 | |
|         assert symbolic_model.model_type == stormpy.ModelType.DTMC | |
|         assert not symbolic_model.supports_parameters | |
|         assert type(symbolic_model) is stormpy.SymbolicSylvanDtmc | |
|         sparse_model = stormpy.transform_to_sparse_model(symbolic_model) | |
|         assert sparse_model.nr_states == 8607 | |
|         assert sparse_model.nr_transitions == 15113 | |
|         assert sparse_model.model_type == stormpy.ModelType.DTMC | |
|         assert not sparse_model.supports_parameters | |
|         assert type(sparse_model) is stormpy.SparseDtmc | |
| 
 | |
|     def test_transform_symbolic_parametric_dtmc_to_sparse(self): | |
|         program = stormpy.parse_prism_program(get_example_path("pdtmc", "parametric_die.pm")) | |
|         model = stormpy.build_symbolic_parametric_model(program) | |
|         assert model.nr_states == 13 | |
|         assert model.nr_transitions == 20 | |
|         assert model.model_type == stormpy.ModelType.DTMC | |
|         assert model.supports_parameters | |
|         assert type(model) is stormpy.SymbolicSylvanParametricDtmc | |
|         symbolic_model = stormpy.transform_to_sparse_model(model) | |
|         assert symbolic_model.nr_states == 13 | |
|         assert symbolic_model.nr_transitions == 20 | |
|         assert symbolic_model.model_type == stormpy.ModelType.DTMC | |
|         assert symbolic_model.supports_parameters | |
|         assert type(symbolic_model) is stormpy.SparseParametricDtmc | |
| 
 | |
|     def test_transform_continuous_to_discrete_time_model_ctmc(self): | |
|         ctmc = stormpy.build_model_from_drn(get_example_path("ctmc", "dft.drn")) | |
|         formulas = stormpy.parse_properties("T=? [ F \"failed\" ]") | |
|         assert ctmc.nr_states == 16 | |
|         assert ctmc.nr_transitions == 33 | |
|         assert len(ctmc.initial_states) == 1 | |
|         initial_state = ctmc.initial_states[0] | |
|         assert initial_state == 1 | |
|         result = stormpy.model_checking(ctmc, formulas[0]) | |
|         assert math.isclose(result.at(initial_state), 4.166666667) | |
| 
 | |
|         dtmc, dtmc_formulas = stormpy.transform_to_discrete_time_model(ctmc, formulas) | |
|         assert dtmc.nr_states == 16 | |
|         assert dtmc.nr_transitions == 33 | |
|         assert len(dtmc.initial_states) == 1 | |
|         initial_state = dtmc.initial_states[0] | |
|         assert initial_state == 1 | |
|         result = stormpy.model_checking(dtmc, dtmc_formulas[0]) | |
|         assert math.isclose(result.at(initial_state), 4.166666667) | |
| 
 | |
|     def test_transform_continuous_to_discrete_time_model_ma(self): | |
|         program = stormpy.parse_prism_program(get_example_path("ma", "simple.ma"), False, True) | |
|         formulas = stormpy.parse_properties_for_prism_program("Tmin=? [ F s=4 ]", program) | |
|         ma = stormpy.build_model(program, formulas) | |
|         assert ma.nr_states == 5 | |
|         assert ma.nr_transitions == 8 | |
|         assert ma.model_type == stormpy.ModelType.MA | |
|         assert len(ma.initial_states) == 1 | |
|         initial_state = ma.initial_states[0] | |
|         assert initial_state == 0 | |
|         result = stormpy.model_checking(ma, formulas[0]) | |
|         assert math.isclose(result.at(initial_state), 0.08333333333) | |
| 
 | |
|         mdp, mdp_formulas = stormpy.transform_to_discrete_time_model(ma, formulas) | |
|         assert mdp.nr_states == 5 | |
|         assert mdp.nr_transitions == 8 | |
|         assert mdp.model_type == stormpy.ModelType.MDP | |
|         assert len(mdp.initial_states) == 1 | |
|         initial_state = mdp.initial_states[0] | |
|         assert initial_state == 0 | |
|         result = stormpy.model_checking(mdp, mdp_formulas[0]) | |
|         assert math.isclose(result.at(initial_state), 0.08333333333) | |
| 
 | |
|     def test_eliminate_non_markovian_chains(self): | |
|         program = stormpy.parse_prism_program(get_example_path("ma", "stream2.ma"), False, True) | |
|         formulas = stormpy.parse_properties_for_prism_program("Pmin=? [ F \"done\"];Tmin=? [ F \"done\" ]", program) | |
|         ma = stormpy.build_model(program, formulas) | |
|         assert ma.nr_states == 12 | |
|         assert ma.nr_transitions == 14 | |
|         assert ma.model_type == stormpy.ModelType.MA | |
|         assert len(ma.initial_states) == 1 | |
|         initial_state = ma.initial_states[0] | |
|         assert initial_state == 0 | |
|         assert len(formulas) == 2 | |
|         result = stormpy.model_checking(ma, formulas[0]) | |
|         assert math.isclose(result.at(initial_state), 1) | |
| 
 | |
|         # Keep labels | |
|         ma_elim, ma_formulas_elim = stormpy.eliminate_non_markovian_chains(ma, formulas, stormpy.EliminationLabelBehavior.KEEP_LABELS) | |
|         assert ma_elim.nr_states == 9 | |
|         assert ma_elim.nr_transitions == 11 | |
|         assert ma_elim.model_type == stormpy.ModelType.MA | |
|         assert len(ma_elim.initial_states) == 1 | |
|         initial_state = ma_elim.initial_states[0] | |
|         assert initial_state == 0 | |
|         assert len(ma_formulas_elim) == 1 | |
|         result = stormpy.model_checking(ma_elim, ma_formulas_elim[0]) | |
|         assert math.isclose(result.at(initial_state), 1) | |
| 
 | |
|         # Merge labels | |
|         ma_elim, ma_formulas_elim = stormpy.eliminate_non_markovian_chains(ma, formulas, stormpy.EliminationLabelBehavior.MERGE_LABELS) | |
|         assert ma_elim.nr_states == 8 | |
|         assert ma_elim.nr_transitions == 10 | |
|         assert ma_elim.model_type == stormpy.ModelType.MA | |
|         assert len(ma_elim.initial_states) == 1 | |
|         initial_state = ma_elim.initial_states[0] | |
|         assert initial_state == 0 | |
|         assert len(ma_formulas_elim) == 1 | |
|         result = stormpy.model_checking(ma_elim, ma_formulas_elim[0]) | |
|         assert math.isclose(result.at(initial_state), 1) | |
| 
 | |
|         # Delete labels | |
|         ma_elim, ma_formulas_elim = stormpy.eliminate_non_markovian_chains(ma, formulas, stormpy.EliminationLabelBehavior.DELETE_LABELS) | |
|         assert ma_elim.nr_states == 8 | |
|         assert ma_elim.nr_transitions == 10 | |
|         assert ma_elim.model_type == stormpy.ModelType.MA | |
|         assert len(ma_elim.initial_states) == 1 | |
|         initial_state = ma_elim.initial_states[0] | |
|         assert initial_state == 0 | |
|         assert len(ma_formulas_elim) == 1 | |
|         result = stormpy.model_checking(ma_elim, ma_formulas_elim[0]) | |
|         assert math.isclose(result.at(initial_state), 1)
 |