You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							111 lines
						
					
					
						
							4.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							111 lines
						
					
					
						
							4.8 KiB
						
					
					
				| import stormpy | |
| from helpers.helper import get_example_path | |
| 
 | |
| import math | |
| 
 | |
| class TestMatrix: | |
|     def test_sparse_matrix(self): | |
|         model = stormpy.parse_explicit_model(get_example_path("dtmc", "die.tra"), get_example_path("dtmc", "die.lab")) | |
|         matrix = model.transition_matrix | |
|         assert type(matrix) is stormpy.storage.SparseMatrix | |
|         assert matrix.nr_rows == model.nr_states | |
|         assert matrix.nr_columns == model.nr_states | |
|         assert matrix.nr_entries == 27 #model.nr_transitions | |
|         for e in matrix: | |
|             assert e.value() == 0.5 or e.value() == 0 or (e.value() == 1 and e.column > 6) | |
|      | |
|     def test_backward_matrix(self): | |
|         model = stormpy.parse_explicit_model(get_example_path("dtmc", "die.tra"), get_example_path("dtmc", "die.lab")) | |
|         matrix = model.backward_transition_matrix | |
|         assert type(matrix) is stormpy.storage.SparseMatrix | |
|         assert matrix.nr_rows == model.nr_states | |
|         assert matrix.nr_columns == model.nr_states | |
|         assert matrix.nr_entries == 20 #model.nr_transitions | |
|         for e in matrix: | |
|             assert e.value() == 0.5 or e.value() == 0 or (e.value() == 1 and e.column > 6) | |
|      | |
|     def test_change_sparse_matrix(self): | |
|         model = stormpy.parse_explicit_model(get_example_path("dtmc", "die.tra"), get_example_path("dtmc", "die.lab")) | |
|         matrix = model.transition_matrix | |
|         for e in matrix: | |
|             assert e.value() == 0.5 or e.value() == 0 or e.value() == 1 | |
|         i = 0 | |
|         for e in matrix: | |
|             e.set_value(i) | |
|             i += 0.1 | |
|         i = 0 | |
|         for e in matrix: | |
|             assert e.value() == i | |
|             i += 0.1 | |
|      | |
|     def test_change_sparse_matrix_modelchecking(self): | |
|         import stormpy.logic | |
|         model = stormpy.parse_explicit_model(get_example_path("dtmc", "die.tra"), get_example_path("dtmc", "die.lab")) | |
|         matrix = model.transition_matrix | |
|         # Check matrix | |
|         for e in matrix: | |
|             assert e.value() == 0.5 or e.value() == 0 or e.value() == 1 | |
|         # First model checking | |
|         formulas = stormpy.parse_properties("P=? [ F \"one\" ]") | |
|         result = stormpy.model_checking(model, formulas[0]) | |
|         resValue = result.at(model.initial_states[0]) | |
|         assert math.isclose(resValue, 0.16666666666666663) | |
|          | |
|         # Change probabilities | |
|         i = 0 | |
|         for e in matrix: | |
|             if e.value() == 0.5: | |
|                 if i % 2 == 0: | |
|                     e.set_value(0.3) | |
|                 else: | |
|                     e.set_value(0.7) | |
|                 i += 1 | |
|         for e in matrix: | |
|             assert e.value() == 0.3 or e.value() == 0.7 or e.value() == 1 or e.value() == 0 | |
|         # Second model checking | |
|         result = stormpy.model_checking(model, formulas[0]) | |
|         resValue = result.at(model.initial_states[0]) | |
|         assert math.isclose(resValue, 0.06923076923076932) | |
|          | |
|         # Change probabilities again | |
|         for state in model.states: | |
|             for action in state.actions: | |
|                 for transition in action.transitions: | |
|                     if transition.value() == 0.3: | |
|                         transition.set_value(0.8) | |
|                     elif transition.value() == 0.7: | |
|                         transition.set_value(0.2) | |
|         # Third model checking | |
|         result = stormpy.model_checking(model, formulas[0]) | |
|         resValue = result.at(model.initial_states[0]) | |
|         assert math.isclose(resValue, 0.3555555555555556) | |
|      | |
|     def test_change_parametric_sparse_matrix_modelchecking(self): | |
|         import stormpy.logic | |
|         import pycarl | |
|         program = stormpy.parse_prism_program(get_example_path("pdtmc", "brp16_2.pm")) | |
|         formulas = stormpy.parse_properties_for_prism_program("P=? [ F s=5 ]", program) | |
|         model = stormpy.build_parametric_model(program, formulas) | |
|         matrix = model.transition_matrix | |
|         # Check matrix | |
|         one_pol = pycarl.Rational(1) | |
|         one_pol = pycarl.FactorizedPolynomial(one_pol) | |
|         one = pycarl.FactorizedRationalFunction(one_pol, one_pol) | |
|         for e in matrix: | |
|             assert e.value() == one or len(e.value().gather_variables()) > 0 | |
|         # First model checking | |
|         result = stormpy.model_checking(model, formulas[0]) | |
|         assert len(result.result_function.gather_variables()) > 0 | |
|          | |
|         # Change probabilities | |
|         two_pol = pycarl.Rational(2) | |
|         two_pol = pycarl.FactorizedPolynomial(two_pol) | |
|         new_val = pycarl.FactorizedRationalFunction(one_pol, two_pol) | |
|         for e in matrix: | |
|             if len(e.value().gather_variables()) > 0: | |
|                 e.set_value(new_val) | |
|         for e in matrix: | |
|             assert e.value() == new_val or e.value() == one | |
|         # Second model checking | |
|         result = stormpy.model_checking(model, formulas[0]) | |
|         assert len(result.result_function.gather_variables()) == 0
 |