You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							85 lines
						
					
					
						
							3.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							85 lines
						
					
					
						
							3.4 KiB
						
					
					
				| /* | |
|     tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array | |
|     arguments | |
|  | |
|     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | |
|  | |
|     All rights reserved. Use of this source code is governed by a | |
|     BSD-style license that can be found in the LICENSE file. | |
| */ | |
| 
 | |
| #include "pybind11_tests.h" | |
| #include <pybind11/numpy.h> | |
|  | |
| double my_func(int x, float y, double z) { | |
|     py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); | |
|     return (float) x*y*z; | |
| } | |
| 
 | |
| std::complex<double> my_func3(std::complex<double> c) { | |
|     return c * std::complex<double>(2.f); | |
| } | |
| 
 | |
| struct VectorizeTestClass { | |
|     VectorizeTestClass(int v) : value{v} {}; | |
|     float method(int x, float y) { return y + (float) (x + value); } | |
|     int value = 0; | |
| }; | |
| 
 | |
| struct NonPODClass { | |
|     NonPODClass(int v) : value{v} {} | |
|     int value; | |
| }; | |
| 
 | |
| test_initializer numpy_vectorize([](py::module &m) { | |
|     // Vectorize all arguments of a function (though non-vector arguments are also allowed) | |
|     m.def("vectorized_func", py::vectorize(my_func)); | |
| 
 | |
|     // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) | |
|     m.def("vectorized_func2", | |
|         [](py::array_t<int> x, py::array_t<float> y, float z) { | |
|             return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); | |
|         } | |
|     ); | |
| 
 | |
|     // Vectorize a complex-valued function | |
|     m.def("vectorized_func3", py::vectorize(my_func3)); | |
| 
 | |
|     /// Numpy function which only accepts specific data types | |
|     m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); | |
|     m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); | |
|     m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); | |
| 
 | |
| 
 | |
|     // Passthrough test: references and non-pod types should be automatically passed through (in the | |
|     // function definition below, only `b`, `d`, and `g` are vectorized): | |
|     py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); | |
|     m.def("vec_passthrough", py::vectorize( | |
|         [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { | |
|             return *a + b + c.at(0) + d + e + f.value + g; | |
|         } | |
|     )); | |
| 
 | |
|     py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); | |
|     vtc .def(py::init<int>()) | |
|         .def_readwrite("value", &VectorizeTestClass::value); | |
| 
 | |
|     // Automatic vectorizing of methods | |
|     vtc.def("method", py::vectorize(&VectorizeTestClass::method)); | |
| 
 | |
|     // Internal optimization test for whether the input is trivially broadcastable: | |
|     py::enum_<py::detail::broadcast_trivial>(m, "trivial") | |
|         .value("f_trivial", py::detail::broadcast_trivial::f_trivial) | |
|         .value("c_trivial", py::detail::broadcast_trivial::c_trivial) | |
|         .value("non_trivial", py::detail::broadcast_trivial::non_trivial); | |
|     m.def("vectorized_is_trivial", []( | |
|                 py::array_t<int, py::array::forcecast> arg1, | |
|                 py::array_t<float, py::array::forcecast> arg2, | |
|                 py::array_t<double, py::array::forcecast> arg3 | |
|                 ) { | |
|         ssize_t ndim; | |
|         std::vector<ssize_t> shape; | |
|         std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; | |
|         return py::detail::broadcast(buffers, ndim, shape); | |
|     }); | |
| });
 |