import gymnasium as gym

import minigrid
# import numpy as np

# import ray
from ray.tune import register_env
from ray.rllib.algorithms.ppo import PPOConfig
from ray.rllib.algorithms.dqn.dqn import DQNConfig
# from ray.rllib.algorithms.callbacks import DefaultCallbacks
from ray.tune.logger import pretty_print
from ray.rllib.models import ModelCatalog


from TorchActionMaskModel import TorchActionMaskModel
from Wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper
from helpers import parse_arguments, create_log_dir, ShieldingConfig
from ShieldHandlers import MiniGridShieldHandler

import matplotlib.pyplot as plt

from ray.tune.logger import TBXLogger   

  

def shielding_env_creater(config):
    name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0")
    framestack = config.get("framestack", 4)
    args = config.get("args", None)
    args.grid_path = F"{args.grid_path}_{config.worker_index}.txt"
    args.prism_path = F"{args.prism_path}_{config.worker_index}.prism"
    
    shielding = config.get("shielding", False)
    
    # if shielding:
    #     assert(False)
    
    shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula)
    
    env = gym.make(name)
    env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, mask_actions=shielding)

    env = OneHotShieldingWrapper(env,
                        config.vector_index if hasattr(config, "vector_index") else 0,
                        framestack=framestack
                        )
    
    
    return env


def register_minigrid_shielding_env(args):
    env_name = "mini-grid-shielding"
    register_env(env_name, shielding_env_creater)

    ModelCatalog.register_custom_model(
        "shielding_model", 
        TorchActionMaskModel
    )


def ppo(args):
    register_minigrid_shielding_env(args)
    
    config = (PPOConfig()
        .rollouts(num_rollout_workers=args.workers)
        .resources(num_gpus=0)
        .environment( env="mini-grid-shielding",
                      env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Enabled or args.shielding is ShieldingConfig.Training})
        .framework("torch")
        .evaluation(evaluation_config={ "evaluation_interval": 1,
                                        "evaluation_parallel_to_training": False,
                                        "env": "mini-grid-shielding", 
                                        "env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Enabled or args.shielding is ShieldingConfig.Evaluation}})
        #.callbacks(MyCallbacks)
        .rl_module(_enable_rl_module_api = False)
        .debugging(logger_config={
            "type": TBXLogger, 
            "logdir": create_log_dir(args)
        })
        .training(_enable_learner_api=False ,model={
            "custom_model": "shielding_model"      
        }))
    
    algo =(
        
        config.build()
    )
    
    iterations = args.iterations
    
    for i in range(iterations):
        algo.train()
        
        if i % 5 == 0:
            algo.save()
        
    
    for i in range(iterations):
        eval_result = algo.evaluate()
        print(pretty_print(eval_result))
        

def main():
    import argparse
    args = parse_arguments(argparse)

    ppo(args)
   


if __name__ == '__main__':
    main()