import stormpy import stormpy.core import stormpy.simulator import stormpy.shields import stormpy.examples import stormpy.examples.files import random def optimal_shield_simulator(): path = stormpy.examples.files.prism_smg_lights formula_str = "<optimal, Optimal> <<shield>> R{\"differenceWithInterferenceCost\"}min=? [ LRA ]" program = stormpy.parse_prism_program(path) formulas = stormpy.parse_properties_for_prism_program(formula_str, program) options = stormpy.BuilderOptions([p.raw_formula for p in formulas]) options.set_build_state_valuations(True) options.set_build_choice_labels(True) options.set_build_all_labels() model = stormpy.build_sparse_model_with_options(program, options) result = stormpy.model_checking(model, formulas[0], extract_scheduler=True) assert result.has_scheduler assert result.has_shield shield = result.shield scheduler = shield.construct() simulator = stormpy.simulator.create_simulator(model)#, seed=42) print(simulator) while not simulator.is_done(): current_state = simulator.get_current_state() state_string = model.state_valuations.get_string(current_state) # print(F"Simulator is in state {state_string}.") temp = scheduler.get_choice(current_state) # print(F"Correction map is {temp.choice_map}") # print([model.get_label_of_choice(current_state, x) for x in simulator.available_actions()]) print(F"Available actions {simulator.available_actions()}") for action in simulator.available_actions(): print(F"Action: {action} ActionLabel: {model.get_label_of_choice(current_state, action)}") observation, reward = simulator.step() if __name__ == '__main__': optimal_shield_simulator()