Browse Source

completed tests for ma, mdp, pomdp

refactoring
hannah 5 years ago
committed by Matthias Volk
parent
commit
db6a247fcc
No known key found for this signature in database GPG Key ID: 83A57678F739FCD3
  1. 334
      tests/storage/test_model_components.py

334
tests/storage/test_model_components.py

@ -16,10 +16,7 @@ class TestSparseModelComponents:
assert components.player1_matrix is None
assert not components.rate_transitions
# todo mdp
# todo pomdp?
def test_build_dtmc_from_model_components(self):
def test_build_dtmc(self):
nr_states = 13
nr_choices = 13
@ -148,7 +145,7 @@ class TestSparseModelComponents:
assert dtmc.choice_origins.get_number_of_identifiers() == 9
@numpy_avail
def test_build_ctmc_from_model_components(self):
def test_build_ctmc(self):
import numpy as np
nr_states = 12
@ -266,14 +263,12 @@ class TestSparseModelComponents:
assert not ctmc.reward_models["served"].has_state_rewards
assert ctmc.reward_models["served"].has_state_action_rewards
assert ctmc.reward_models["served"].state_action_rewards == [0.0, 0.0, 0.0, 0.0, 0.0, 0.6666666666666666, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0]
0.0, 1.0, 0.0, 0.0, 0.0]
assert not ctmc.reward_models["served"].has_transition_rewards
assert ctmc.reward_models["waiting"].has_state_rewards
assert not ctmc.reward_models["waiting"].has_state_action_rewards
assert ctmc.reward_models["waiting"].state_rewards == [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0,
1.0]
assert ctmc.reward_models["waiting"].state_rewards == [0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]
assert not ctmc.reward_models["waiting"].has_transition_rewards
# Test choice_labeling
@ -303,7 +298,7 @@ class TestSparseModelComponents:
# Test exit_rates
assert ctmc.exit_rates == [201.0, 200.5, 200.5, 201.0, 200.0, 1.5, 200.5, 200.5, 1.0, 200.0, 1.5, 1.0]
def test_build_ma_from_model_components(self):
def test_build_ma(self):
nr_states = 5
nr_choices = 10
@ -454,3 +449,322 @@ class TestSparseModelComponents:
# Test markovian states
assert ma.markovian_states == stormpy.BitVector(5, [0, 1, 2, 3, 4])
def test_build_mdp(self):
nr_states = 13
nr_choices = 14
# Build transition matrix
builder = stormpy.SparseMatrixBuilder(rows=0, columns=0, entries=0, force_dimensions=False,
has_custom_row_grouping=True, row_groups=0)
# Row group, state 0
builder.new_row_group(0)
builder.add_next_value(0, 1, 0.5)
builder.add_next_value(0, 2, 0.5)
builder.add_next_value(1, 1, 0.2)
builder.add_next_value(1, 2, 0.8)
# Row group, state 1
builder.new_row_group(2)
builder.add_next_value(2, 3, 0.5)
builder.add_next_value(2, 4, 0.5)
# Row group, state 2
builder.new_row_group(3)
builder.add_next_value(3, 5, 0.5)
builder.add_next_value(3, 6, 0.5)
# Row group, state 3
builder.new_row_group(4)
builder.add_next_value(4, 7, 0.5)
builder.add_next_value(4, 1, 0.5)
# Row group, state 4
builder.new_row_group(5)
builder.add_next_value(5, 8, 0.5)
builder.add_next_value(5, 9, 0.5)
# Row group, state 5
builder.new_row_group(6)
builder.add_next_value(6, 10, 0.5)
builder.add_next_value(6, 11, 0.5)
# Row group, state 6
builder.new_row_group(7)
builder.add_next_value(7, 2, 0.5)
builder.add_next_value(7, 12, 0.5)
# final states
for s in range(8, 14):
builder.new_row_group(s)
builder.add_next_value(s, s - 1, 1)
transition_matrix = builder.build(nr_choices, nr_states)
# state_labeling
state_labeling = stormpy.storage.StateLabeling(nr_states)
labels = {'init', 'one', 'two', 'three', 'four', 'five', 'six', 'done', 'deadlock'}
for label in labels:
state_labeling.add_label(label)
state_labeling.add_label_to_state('init', 0)
state_labeling.add_label_to_state('one', 7)
state_labeling.add_label_to_state('two', 8)
state_labeling.add_label_to_state('three', 9)
state_labeling.add_label_to_state('four', 10)
state_labeling.add_label_to_state('five', 11)
state_labeling.add_label_to_state('six', 12)
state_labeling.set_states('done', stormpy.BitVector(nr_states, [7, 8, 9, 10, 11, 12]))
# reward_models
reward_models = {}
# Vector representing the state-action rewards
action_reward = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
reward_models['coin_flips'] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward)
# choice_labeling
choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices)
choice_labels = {'a', 'b'}
for label in choice_labels:
choice_labeling.add_label(label)
choice_labeling.add_label_to_choice('a', 0)
choice_labeling.add_label_to_choice('b', 1)
# state_valuations
manager = stormpy.ExpressionManager()
var_s = manager.create_integer_variable(name='s')
var_d = manager.create_integer_variable(name='d')
v_builder = stormpy.StateValuationsBuilder()
v_builder.add_variable(var_s)
v_builder.add_variable(var_d)
for s in range(7):
# values: vector [value for s, value for d]
v_builder.add_state(state=s, boolean_values=[], integer_values=[s, 0], rational_values=[])
for s in range(7, 13):
v_builder.add_state(state=s, boolean_values=[], integer_values=[7, s - 6], rational_values=[])
state_valuations = v_builder.build(13)
# choice_origins
prism_program = stormpy.parse_prism_program(get_example_path("mdp", "die_c1.nm"))
index_to_identifier_mapping = [1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9]
id_to_command_set_mapping = [stormpy.FlatSet() for _ in range(10)]
for i in range(1, 9):
# 0: no origin
id_to_command_set_mapping[i].insert(i - 1)
id_to_command_set_mapping[9].insert(8)
choice_origins = stormpy.PrismChoiceOrigins(prism_program, index_to_identifier_mapping,
id_to_command_set_mapping)
# Construct Components
components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling,
reward_models=reward_models, rate_transitions=False)
components.state_valuations = state_valuations
components.choice_labeling = choice_labeling
components.choice_origins = choice_origins
mdp = stormpy.storage.SparseMdp(components)
assert type(mdp) is stormpy.SparseMdp
assert not mdp.supports_parameters
# Test transition matrix
assert mdp.nr_choices == nr_choices
assert mdp.nr_states == nr_states
assert mdp.nr_transitions == 22
assert mdp.transition_matrix.nr_entries == mdp.nr_transitions
for e in mdp.transition_matrix:
assert e.value() == 0.5 or e.value() == 0 or e.value() == 0.2 or e.value() == 0.8 or (
e.value() == 1 and e.column > 6)
for state in mdp.states:
assert len(state.actions) <= 2
# Test state_labeling
assert mdp.labeling.get_labels() == {'init', 'deadlock', 'done', 'one', 'two', 'three', 'four', 'five', 'six'}
# Test reward_models
assert len(mdp.reward_models) == 1
assert not mdp.reward_models["coin_flips"].has_state_rewards
assert mdp.reward_models["coin_flips"].has_state_action_rewards
for reward in mdp.reward_models["coin_flips"].state_action_rewards:
assert reward == 1.0 or reward == 0.0
assert not mdp.reward_models["coin_flips"].has_transition_rewards
# Test choice_labeling
assert mdp.has_choice_labeling()
assert mdp.choice_labeling.get_labels() == {'a', 'b'}
# Test state_valuations
assert mdp.has_state_valuations()
assert mdp.state_valuations
value_s = [None] * nr_states
value_d = [None] * nr_states
for s in range(0, mdp.nr_states):
value_s[s] = mdp.state_valuations.get_integer_value(s, var_s)
value_d[s] = mdp.state_valuations.get_integer_value(s, var_d)
assert value_s == [0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7]
assert value_d == [0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6]
# Test choice_origins
assert mdp.has_choice_origins()
assert mdp.choice_origins is components.choice_origins
assert mdp.choice_origins.get_number_of_identifiers() == 10
@numpy_avail
def test_build_pomdp(self):
import numpy as np
nr_states = 10
nr_choices = 34
# Build transition matrix
builder = stormpy.SparseMatrixBuilder(rows=0, columns=0, entries=0, force_dimensions=False,
has_custom_row_grouping=True, row_groups=0)
transitions = np.array([
[0, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
transition_matrix = stormpy.build_sparse_matrix(transitions,
row_group_indices=[0, 1, 5, 9, 13, 17, 21, 25, 29, 33])
# state_labeling
state_labeling = stormpy.storage.StateLabeling(nr_states)
labels = {'deadlock', 'goal', 'init'}
for label in labels:
state_labeling.add_label(label)
state_labeling.add_label_to_state('init', 0)
state_labeling.add_label_to_state('goal', 9)
# reward_models
reward_models = {}
# Vector representing state-action rewards
action_reward = [0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0]
reward_models[''] = stormpy.SparseRewardModel(optional_state_action_reward_vector=action_reward)
# choice_labeling
choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices)
choice_labels = {'south', 'north', 'west', 'east', 'done'}
for label in choice_labels:
choice_labeling.add_label(label)
choice_labeling.set_choices('south', stormpy.BitVector(nr_choices, [4, 8, 12, 16, 20, 24, 28, 32]))
choice_labeling.set_choices('north', stormpy.BitVector(nr_choices, [3, 7, 11, 15, 19, 23, 27, 31]))
choice_labeling.set_choices('west', stormpy.BitVector(nr_choices, [2, 6, 10, 14, 18, 22, 26, 30]))
choice_labeling.set_choices('east', stormpy.BitVector(nr_choices, [1, 5, 9, 13, 17, 21, 25, 29]))
choice_labeling.set_choices('done', stormpy.BitVector(nr_choices, [33]))
# StateValuations
manager = stormpy.ExpressionManager()
var_x = manager.create_integer_variable(name='x')
var_y = manager.create_integer_variable(name='y')
var_o = manager.create_integer_variable(name='o')
v_builder = stormpy.StateValuationsBuilder()
v_builder.add_variable(var_x)
v_builder.add_variable(var_y)
v_builder.add_variable(var_o)
v_builder.add_state(state=0, boolean_values=[], integer_values=[0, 0, 0], rational_values=[])
v_builder.add_state(state=1, boolean_values=[], integer_values=[0, 0, 1], rational_values=[])
v_builder.add_state(state=2, boolean_values=[], integer_values=[0, 1, 1], rational_values=[])
v_builder.add_state(state=3, boolean_values=[], integer_values=[0, 2, 1], rational_values=[])
v_builder.add_state(state=4, boolean_values=[], integer_values=[1, 0, 1], rational_values=[])
v_builder.add_state(state=5, boolean_values=[], integer_values=[1, 1, 1], rational_values=[])
v_builder.add_state(state=6, boolean_values=[], integer_values=[1, 2, 1], rational_values=[])
v_builder.add_state(state=7, boolean_values=[], integer_values=[2, 1, 1], rational_values=[])
v_builder.add_state(state=8, boolean_values=[], integer_values=[2, 2, 1], rational_values=[])
v_builder.add_state(state=9, boolean_values=[], integer_values=[2, 0, 2], rational_values=[])
state_valuations = v_builder.build(nr_states)
observations = [1, 0, 0, 0, 0, 0, 0, 0, 0, 2]
# Build components, set rate_transitions to False
components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling,
reward_models=reward_models, rate_transitions=False)
components.state_valuations = state_valuations
components.choice_labeling = choice_labeling
# components.choice_origins=choice_origins
components.observability_classes = observations
pomdp = stormpy.storage.SparsePomdp(components)
assert type(pomdp) is stormpy.SparsePomdp
assert not pomdp.supports_parameters
# Test transition matrix
assert pomdp.nr_choices == nr_choices
assert pomdp.nr_states == nr_states
assert pomdp.nr_transitions == 41
for e in pomdp.transition_matrix:
assert e.value() == 1 or e.value() == 0 or e.value() == 0.125
for state in pomdp.states:
assert len(state.actions) <= 4
# Test state_labeling
assert pomdp.labeling.get_labels() == {'init', 'goal', 'deadlock'}
# Test reward_models
assert len(pomdp.reward_models) == 1
assert not pomdp.reward_models[''].has_state_rewards
assert pomdp.reward_models[''].has_state_action_rewards
for reward in pomdp.reward_models[''].state_action_rewards:
assert reward == 1.0 or reward == 0.0
assert not pomdp.reward_models[''].has_transition_rewards
# Test choice_labeling
assert pomdp.has_choice_labeling()
assert pomdp.choice_labeling.get_labels() == {'east', 'west', 'north', 'south', 'done'}
# Test state_valuations
assert pomdp.has_state_valuations()
assert pomdp.state_valuations
value_x = [None] * nr_states
value_y = [None] * nr_states
value_o = [None] * nr_states
for s in range(0, pomdp.nr_states):
value_x[s] = pomdp.state_valuations.get_integer_value(s, var_x)
value_y[s] = pomdp.state_valuations.get_integer_value(s, var_y)
value_o[s] = pomdp.state_valuations.get_integer_value(s, var_o)
assert value_x == [0, 0, 0, 0, 1, 1, 1, 2, 2, 2]
assert value_y == [0, 0, 1, 2, 0, 1, 2, 1, 2, 0]
assert value_o == [0, 1, 1, 1, 1, 1, 1, 1, 1, 2]
# Test choice_origins
assert not pomdp.has_choice_origins()
assert pomdp.observations == [1, 0, 0, 0, 0, 0, 0, 0, 0, 2]
Loading…
Cancel
Save