| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				
					@ -19,23 +19,23 @@ from shieldhandlers import MiniGridShieldHandler, create_shield_query | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					from torch.utils.tensorboard import SummaryWriter | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					from callbacks import MyCallbacks | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					def shielding_env_creater(config): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    name = config.get("name", "MiniGrid-LavaCrossingS9N3-v0") | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    framestack = config.get("framestack", 4) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    args = config.get("args", None) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    args.grid_path = F"{args.expname}_{args.grid_path}_{config.worker_index}.txt" | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    args.prism_path = F"{args.expname}_{args.prism_path}_{config.worker_index}.prism"    | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    shielding = config.get("shielding", False)    | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    shield_creator = MiniGridShieldHandler(grid_file=args.grid_path,  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    args.prism_path = F"{args.expname}_{args.prism_path}_{config.worker_index}.prism" | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    shielding = config.get("shielding", False) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    shield_creator = MiniGridShieldHandler(grid_file=args.grid_path, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                           grid_to_prism_path=args.grid_to_prism_binary_path, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                           prism_path=args.prism_path, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                           formula=args.formula, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                           shield_value=args.shield_value, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                           prism_config=args.prism_config, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                           shield_comparision=args.shield_comparision) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    prob_forward = args.prob_forward | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    prob_direct = args.prob_direct | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    prob_next = args.prob_next | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				
					@ -47,8 +47,8 @@ def shielding_env_creater(config): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                        config.vector_index if hasattr(config, "vector_index") else 0, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                        framestack=framestack | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                        ) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    return env | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				
					@ -57,10 +57,10 @@ def register_minigrid_shielding_env(args): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    register_env(env_name, shielding_env_creater) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    ModelCatalog.register_custom_model( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        "shielding_model",  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        "shielding_model", | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        TorchActionMaskModel | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    ) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					def trial_name_creator(trial : Trial): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    return "trial" | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				
					@ -78,7 +78,7 @@ def ppo(args): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                  "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                  },) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .framework("torch") | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .callbacks(MyCallbacks, ShieldInfoCallback(logdir, [1,12]) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .callbacks(MyCallbacks, ShieldInfoCallback(logdir, [1,12])) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        .evaluation(evaluation_config={ | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                       "evaluation_interval": 1, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                        "evaluation_duration": 10, | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
				 | 
				
					@ -106,25 +106,24 @@ def ppo(args): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                       ), | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                        run_config=air.RunConfig( | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                stop = {"episode_reward_mean": 94, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                        "timesteps_total": args.steps,},  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                        "timesteps_total": args.steps,}, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                                                       num_to_keep=1,  | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                                                       num_to_keep=1, | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                                                       checkpoint_score_attribute="episode_reward_mean", | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                                                       ), | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                               storage_path=F"{logdir}", | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                               name=test_name(args), | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                                | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    ) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                        , | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					                        ), | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    param_space=config,) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    results = tuner.fit() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    best_result = results.get_best_result() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    import pprint | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    metrics_to_print = [ | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    "episode_reward_mean", | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    "episode_reward_max", | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				
					@ -134,14 +133,14 @@ def ppo(args): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    pprint.pprint({k: v for k, v in best_result.metrics.items() if k in metrics_to_print}) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					   # algo = Algorithm.from_checkpoint(best_result.checkpoint) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    # eval_log_dir = F"{logdir}-eval" | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					         | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    # writer = SummaryWriter(log_dir=eval_log_dir) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    # csv_logger = CSVLogger(config=config, logdir=eval_log_dir) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    # for i in range(args.evaluations): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     eval_result = algo.evaluate() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     print(pretty_print(eval_result)) | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				
					@ -149,23 +148,23 @@ def ppo(args): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     # logger.on_result(eval_result) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     csv_logger.on_result(eval_result) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					         | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     evaluation = eval_result['evaluation'] | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     epsiode_reward_mean = evaluation['episode_reward_mean'] | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     episode_len_mean = evaluation['episode_len_mean'] | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     print(epsiode_reward_mean) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     writer.add_scalar("evaluation/episode_reward_mean", epsiode_reward_mean, i) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    #     writer.add_scalar("evaluation/episode_len_mean", episode_len_mean, i) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					         | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					     | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					def main(): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    ray.init(num_cpus=3) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    import argparse | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    args = parse_arguments(argparse) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    ppo(args) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    ray.shutdown() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					if __name__ == '__main__': | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    main() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    main() |