Thomas Knoll
1 year ago
8 changed files with 272 additions and 110 deletions
-
48examples/shields/rl/11_minigridrl.py
-
9examples/shields/rl/13_minigridsb.py
-
44examples/shields/rl/14_train_eval.py
-
118examples/shields/rl/15_train_eval_tune.py
-
21examples/shields/rl/ShieldHandlers.py
-
75examples/shields/rl/Wrappers.py
-
61examples/shields/rl/callbacks.py
-
6examples/shields/rl/helpers.py
@ -0,0 +1,118 @@ |
|||
|
|||
import gymnasium as gym |
|||
|
|||
import minigrid |
|||
# import numpy as np |
|||
|
|||
# import ray |
|||
from ray.tune import register_env |
|||
from ray import tune, air |
|||
from ray.rllib.algorithms.ppo import PPOConfig |
|||
from ray.rllib.algorithms.dqn.dqn import DQNConfig |
|||
# from ray.rllib.algorithms.callbacks import DefaultCallbacks |
|||
from ray.tune.logger import pretty_print, TBXLogger, TBXLoggerCallback, DEFAULT_LOGGERS, UnifiedLogger |
|||
from ray.rllib.models import ModelCatalog |
|||
|
|||
|
|||
from TorchActionMaskModel import TorchActionMaskModel |
|||
from Wrappers import OneHotShieldingWrapper, MiniGridShieldingWrapper |
|||
from helpers import parse_arguments, create_log_dir, ShieldingConfig |
|||
from ShieldHandlers import MiniGridShieldHandler, create_shield_query |
|||
|
|||
from callbacks import MyCallbacks |
|||
|
|||
import matplotlib.pyplot as plt |
|||
from torch.utils.tensorboard import SummaryWriter |
|||
|
|||
|
|||
|
|||
|
|||
def shielding_env_creater(config): |
|||
name = config.get("name", "MiniGrid-LavaCrossingS9N1-v0") |
|||
framestack = config.get("framestack", 4) |
|||
args = config.get("args", None) |
|||
args.grid_path = F"{args.grid_path}_{config.worker_index}.txt" |
|||
args.prism_path = F"{args.prism_path}_{config.worker_index}.prism" |
|||
|
|||
shielding = config.get("shielding", False) |
|||
|
|||
# if shielding: |
|||
# assert(False) |
|||
|
|||
shield_creator = MiniGridShieldHandler(args.grid_path, args.grid_to_prism_binary_path, args.prism_path, args.formula) |
|||
|
|||
env = gym.make(name) |
|||
env = MiniGridShieldingWrapper(env, shield_creator=shield_creator, shield_query_creator=create_shield_query ,mask_actions=shielding) |
|||
|
|||
env = OneHotShieldingWrapper(env, |
|||
config.vector_index if hasattr(config, "vector_index") else 0, |
|||
framestack=framestack |
|||
) |
|||
|
|||
|
|||
return env |
|||
|
|||
|
|||
def register_minigrid_shielding_env(args): |
|||
env_name = "mini-grid-shielding" |
|||
register_env(env_name, shielding_env_creater) |
|||
|
|||
ModelCatalog.register_custom_model( |
|||
"shielding_model", |
|||
TorchActionMaskModel |
|||
) |
|||
|
|||
|
|||
def ppo(args): |
|||
register_minigrid_shielding_env(args) |
|||
|
|||
config = (PPOConfig() |
|||
.rollouts(num_rollout_workers=args.workers) |
|||
.resources(num_gpus=0) |
|||
.environment( env="mini-grid-shielding", |
|||
env_config={"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Training}) |
|||
.framework("torch") |
|||
.callbacks(MyCallbacks) |
|||
.evaluation(evaluation_config={ |
|||
"evaluation_interval": 1, |
|||
"evaluation_duration": 10, |
|||
"evaluation_num_workers":1, |
|||
"env": "mini-grid-shielding", |
|||
"env_config": {"name": args.env, "args": args, "shielding": args.shielding is ShieldingConfig.Full or args.shielding is ShieldingConfig.Evaluation}}) |
|||
.rl_module(_enable_rl_module_api = False) |
|||
.debugging(logger_config={ |
|||
"type": UnifiedLogger, |
|||
"logdir": create_log_dir(args) |
|||
}) |
|||
.training(_enable_learner_api=False ,model={ |
|||
"custom_model": "shielding_model" |
|||
})) |
|||
|
|||
tuner = tune.Tuner("PPO", |
|||
run_config=air.RunConfig( |
|||
stop = {"episode_reward_mean": 50}, |
|||
checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True), |
|||
storage_path=F"{create_log_dir(args)}-tuner" |
|||
), |
|||
param_space=config,) |
|||
|
|||
tuner.fit() |
|||
|
|||
iterations = args.iterations |
|||
print(config.to_dict()) |
|||
tune.run("PPO", config=config) |
|||
|
|||
# print(epsiode_reward_mean) |
|||
# writer.add_scalar("evaluation/episode_reward", epsiode_reward_mean, i) |
|||
|
|||
|
|||
def main(): |
|||
import argparse |
|||
args = parse_arguments(argparse) |
|||
|
|||
ppo(args) |
|||
|
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
main() |
@ -0,0 +1,61 @@ |
|||
|
|||
from typing import Dict |
|||
|
|||
from ray.rllib.policy import Policy |
|||
from ray.rllib.utils.typing import PolicyID |
|||
|
|||
from ray.rllib.algorithms.algorithm import Algorithm |
|||
from ray.rllib.env.base_env import BaseEnv |
|||
from ray.rllib.evaluation import RolloutWorker |
|||
from ray.rllib.evaluation.episode import Episode |
|||
from ray.rllib.evaluation.episode_v2 import EpisodeV2 |
|||
|
|||
from ray.rllib.algorithms.callbacks import DefaultCallbacks, make_multi_callbacks |
|||
|
|||
class MyCallbacks(DefaultCallbacks): |
|||
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: |
|||
# print(F"Epsiode started Environment: {base_env.get_sub_environments()}") |
|||
env = base_env.get_sub_environments()[0] |
|||
episode.user_data["count"] = 0 |
|||
episode.user_data["ran_into_lava"] = [] |
|||
episode.user_data["goals_reached"] = [] |
|||
episode.hist_data["ran_into_lava"] = [] |
|||
episode.hist_data["goals_reached"] = [] |
|||
# print("On episode start print") |
|||
# print(env.printGrid()) |
|||
# print(worker) |
|||
# print(env.action_space.n) |
|||
# print(env.actions) |
|||
# print(env.mission) |
|||
# print(env.observation_space) |
|||
# img = env.get_frame() |
|||
# plt.imshow(img) |
|||
# plt.show() |
|||
|
|||
|
|||
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy] | None = None, episode: Episode | EpisodeV2, env_index: int | None = None, **kwargs) -> None: |
|||
episode.user_data["count"] = episode.user_data["count"] + 1 |
|||
env = base_env.get_sub_environments()[0] |
|||
# print(env.printGrid()) |
|||
|
|||
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[PolicyID, Policy], episode: Episode | EpisodeV2 | Exception, env_index: int | None = None, **kwargs) -> None: |
|||
# print(F"Epsiode end Environment: {base_env.get_sub_environments()}") |
|||
env = base_env.get_sub_environments()[0] |
|||
agent_tile = env.grid.get(env.agent_pos[0], env.agent_pos[1]) |
|||
|
|||
episode.user_data["goals_reached"].append(agent_tile is not None and agent_tile.type == "goal") |
|||
episode.user_data["ran_into_lava"].append(agent_tile is not None and agent_tile.type == "lava") |
|||
episode.custom_metrics["reached_goal"] = agent_tile is not None and agent_tile.type == "goal" |
|||
episode.custom_metrics["ran_into_lava"] = agent_tile is not None and agent_tile.type == "lava" |
|||
#print("On episode end print") |
|||
#print(env.printGrid()) |
|||
episode.hist_data["goals_reached"] = episode.user_data["goals_reached"] |
|||
episode.hist_data["ran_into_lava"] = episode.user_data["ran_into_lava"] |
|||
|
|||
|
|||
def on_evaluate_start(self, *, algorithm: Algorithm, **kwargs) -> None: |
|||
print("Evaluate Start") |
|||
|
|||
def on_evaluate_end(self, *, algorithm: Algorithm, evaluation_metrics: dict, **kwargs) -> None: |
|||
print("Evaluate End") |
|||
|
Write
Preview
Loading…
Cancel
Save
Reference in new issue