You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							418 lines
						
					
					
						
							14 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							418 lines
						
					
					
						
							14 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra.  | |
| // | |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #ifndef EIGEN_FFT_H | |
| #define EIGEN_FFT_H | |
|  | |
| #include <complex> | |
| #include <vector> | |
| #include <map> | |
| #include <Eigen/Core> | |
|  | |
| 
 | |
| /** | |
|   * \defgroup FFT_Module Fast Fourier Transform module | |
|   * | |
|   * \code | |
|   * #include <unsupported/Eigen/FFT> | |
|   * \endcode | |
|   * | |
|   * This module provides Fast Fourier transformation, with a configurable backend | |
|   * implementation. | |
|   * | |
|   * The default implementation is based on kissfft. It is a small, free, and | |
|   * reasonably efficient default. | |
|   * | |
|   * There are currently two implementation backend: | |
|   * | |
|   * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. | |
|   * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form. | |
|   * | |
|   * \section FFTDesign Design | |
|   * | |
|   * The following design decisions were made concerning scaling and | |
|   * half-spectrum for real FFT. | |
|   * | |
|   * The intent is to facilitate generic programming and ease migrating code | |
|   * from  Matlab/octave. | |
|   * We think the default behavior of Eigen/FFT should favor correctness and | |
|   * generality over speed. Of course, the caller should be able to "opt-out" from this | |
|   * behavior and get the speed increase if they want it. | |
|   * | |
|   * 1) %Scaling: | |
|   * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there | |
|   * is a constant gain incurred after the forward&inverse transforms , so  | |
|   * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply.   | |
|   * The downside is that algorithms that worked correctly in Matlab/octave  | |
|   * don't behave the same way once implemented in C++. | |
|   * | |
|   * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x.  | |
|   * | |
|   * 2) Real FFT half-spectrum | |
|   * Other libraries use only half the frequency spectrum (plus one extra  | |
|   * sample for the Nyquist bin) for a real FFT, the other half is the  | |
|   * conjugate-symmetric of the first half.  This saves them a copy and some  | |
|   * memory.  The downside is the caller needs to have special logic for the  | |
|   * number of bins in complex vs real. | |
|   * | |
|   * How Eigen/FFT differs: The full spectrum is returned from the forward  | |
|   * transform.  This facilitates generic template programming by obviating  | |
|   * separate specializations for real vs complex.  On the inverse | |
|   * transform, only half the spectrum is actually used if the output type is real. | |
|   */ | |
|   | |
| 
 | |
| #ifdef EIGEN_FFTW_DEFAULT | |
| // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size | |
| #  include <fftw3.h> | |
| #  include "src/FFT/ei_fftw_impl.h" | |
|    namespace Eigen { | |
|      //template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work | |
|      template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {}; | |
|    } | |
| #elif defined EIGEN_MKL_DEFAULT | |
| // TODO  | |
| // intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form | |
| #  include "src/FFT/ei_imklfft_impl.h" | |
|    namespace Eigen { | |
|      template <typename T> struct default_fft_impl : public internal::imklfft_impl {}; | |
|    } | |
| #else | |
| // internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft | |
| // | |
| # include "src/FFT/ei_kissfft_impl.h" | |
|   namespace Eigen { | |
|      template <typename T>  | |
|        struct default_fft_impl : public internal::kissfft_impl<T> {}; | |
|   } | |
| #endif | |
|  | |
| namespace Eigen { | |
| 
 | |
|   | |
| //  | |
| template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy; | |
| template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy; | |
| 
 | |
| namespace internal { | |
| template<typename T_SrcMat,typename T_FftIfc> | |
| struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> > | |
| { | |
|   typedef typename T_SrcMat::PlainObject ReturnType; | |
| }; | |
| template<typename T_SrcMat,typename T_FftIfc> | |
| struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> > | |
| { | |
|   typedef typename T_SrcMat::PlainObject ReturnType; | |
| }; | |
| } | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc>  | |
| struct fft_fwd_proxy | |
|  : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> > | |
| { | |
|   typedef DenseIndex Index; | |
| 
 | |
|   fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} | |
| 
 | |
|   template<typename T_DestMat> void evalTo(T_DestMat& dst) const; | |
| 
 | |
|   Index rows() const { return m_src.rows(); } | |
|   Index cols() const { return m_src.cols(); } | |
| protected: | |
|   const T_SrcMat & m_src; | |
|   T_FftIfc & m_ifc; | |
|   Index m_nfft; | |
| private: | |
|   fft_fwd_proxy& operator=(const fft_fwd_proxy&); | |
| }; | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc>  | |
| struct fft_inv_proxy | |
|  : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> > | |
| { | |
|   typedef DenseIndex Index; | |
| 
 | |
|   fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} | |
| 
 | |
|   template<typename T_DestMat> void evalTo(T_DestMat& dst) const; | |
| 
 | |
|   Index rows() const { return m_src.rows(); } | |
|   Index cols() const { return m_src.cols(); } | |
| protected: | |
|   const T_SrcMat & m_src; | |
|   T_FftIfc & m_ifc; | |
|   Index m_nfft; | |
| private: | |
|   fft_inv_proxy& operator=(const fft_inv_proxy&); | |
| }; | |
| 
 | |
| 
 | |
| template <typename T_Scalar, | |
|          typename T_Impl=default_fft_impl<T_Scalar> > | |
| class FFT | |
| { | |
|   public: | |
|     typedef T_Impl impl_type; | |
|     typedef DenseIndex Index; | |
|     typedef typename impl_type::Scalar Scalar; | |
|     typedef typename impl_type::Complex Complex; | |
| 
 | |
|     enum Flag { | |
|       Default=0, // goof proof | |
|       Unscaled=1, | |
|       HalfSpectrum=2, | |
|       // SomeOtherSpeedOptimization=4 | |
|       Speedy=32767 | |
|     }; | |
| 
 | |
|     FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { } | |
| 
 | |
|     inline | |
|     bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;} | |
| 
 | |
|     inline | |
|     void SetFlag(Flag f) { m_flag |= (int)f;} | |
| 
 | |
|     inline | |
|     void ClearFlag(Flag f) { m_flag &= (~(int)f);} | |
| 
 | |
|     inline | |
|     void fwd( Complex * dst, const Scalar * src, Index nfft) | |
|     { | |
|         m_impl.fwd(dst,src,static_cast<int>(nfft)); | |
|         if ( HasFlag(HalfSpectrum) == false) | |
|           ReflectSpectrum(dst,nfft); | |
|     } | |
| 
 | |
|     inline | |
|     void fwd( Complex * dst, const Complex * src, Index nfft) | |
|     { | |
|         m_impl.fwd(dst,src,static_cast<int>(nfft)); | |
|     } | |
| 
 | |
|     /* | |
|     inline  | |
|     void fwd2(Complex * dst, const Complex * src, int n0,int n1) | |
|     { | |
|       m_impl.fwd2(dst,src,n0,n1); | |
|     } | |
|     */ | |
| 
 | |
|     template <typename _Input> | |
|     inline | |
|     void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)  | |
|     { | |
|       if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) ) | |
|         dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin | |
|       else | |
|         dst.resize(src.size()); | |
|       fwd(&dst[0],&src[0],src.size()); | |
|     } | |
| 
 | |
|     template<typename InputDerived, typename ComplexDerived> | |
|     inline | |
|     void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1) | |
|     { | |
|       typedef typename ComplexDerived::Scalar dst_type; | |
|       typedef typename InputDerived::Scalar src_type; | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) | |
|       EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time | |
|       EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value), | |
|             YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | |
|       EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, | |
|             THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) | |
| 
 | |
|       if (nfft<1) | |
|         nfft = src.size(); | |
| 
 | |
|       if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) ) | |
|         dst.derived().resize( (nfft>>1)+1); | |
|       else | |
|         dst.derived().resize(nfft); | |
| 
 | |
|       if ( src.innerStride() != 1 || src.size() < nfft ) { | |
|         Matrix<src_type,1,Dynamic> tmp; | |
|         if (src.size()<nfft) { | |
|           tmp.setZero(nfft); | |
|           tmp.block(0,0,src.size(),1 ) = src; | |
|         }else{ | |
|           tmp = src; | |
|         } | |
|         fwd( &dst[0],&tmp[0],nfft ); | |
|       }else{ | |
|         fwd( &dst[0],&src[0],nfft ); | |
|       } | |
|     } | |
|   | |
|     template<typename InputDerived> | |
|     inline | |
|     fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > | |
|     fwd( const MatrixBase<InputDerived> & src, Index nfft=-1) | |
|     { | |
|       return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); | |
|     } | |
| 
 | |
|     template<typename InputDerived> | |
|     inline | |
|     fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > | |
|     inv( const MatrixBase<InputDerived> & src, Index nfft=-1) | |
|     { | |
|       return  fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); | |
|     } | |
| 
 | |
|     inline | |
|     void inv( Complex * dst, const Complex * src, Index nfft) | |
|     { | |
|       m_impl.inv( dst,src,static_cast<int>(nfft) ); | |
|       if ( HasFlag( Unscaled ) == false) | |
|         scale(dst,Scalar(1./nfft),nfft); // scale the time series | |
|     } | |
| 
 | |
|     inline | |
|     void inv( Scalar * dst, const Complex * src, Index nfft) | |
|     { | |
|       m_impl.inv( dst,src,static_cast<int>(nfft) ); | |
|       if ( HasFlag( Unscaled ) == false) | |
|         scale(dst,Scalar(1./nfft),nfft); // scale the time series | |
|     } | |
| 
 | |
|     template<typename OutputDerived, typename ComplexDerived> | |
|     inline | |
|     void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1) | |
|     { | |
|       typedef typename ComplexDerived::Scalar src_type; | |
|       typedef typename OutputDerived::Scalar dst_type; | |
|       const bool realfft= (NumTraits<dst_type>::IsComplex == 0); | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) | |
|       EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) | |
|       EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time | |
|       EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value), | |
|             YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | |
|       EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, | |
|             THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) | |
| 
 | |
|       if (nfft<1) { //automatic FFT size determination | |
|         if ( realfft && HasFlag(HalfSpectrum) )  | |
|           nfft = 2*(src.size()-1); //assume even fft size | |
|         else | |
|           nfft = src.size(); | |
|       } | |
|       dst.derived().resize( nfft ); | |
| 
 | |
|       // check for nfft that does not fit the input data size | |
|       Index resize_input= ( realfft && HasFlag(HalfSpectrum) ) | |
|         ? ( (nfft/2+1) - src.size() ) | |
|         : ( nfft - src.size() ); | |
| 
 | |
|       if ( src.innerStride() != 1 || resize_input ) { | |
|         // if the vector is strided, then we need to copy it to a packed temporary | |
|         Matrix<src_type,1,Dynamic> tmp; | |
|         if ( resize_input ) { | |
|           size_t ncopy = (std::min)(src.size(),src.size() + resize_input); | |
|           tmp.setZero(src.size() + resize_input); | |
|           if ( realfft && HasFlag(HalfSpectrum) ) { | |
|             // pad at the Nyquist bin | |
|             tmp.head(ncopy) = src.head(ncopy); | |
|             tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin | |
|           }else{ | |
|             size_t nhead,ntail; | |
|             nhead = 1+ncopy/2-1; // range  [0:pi) | |
|             ntail = ncopy/2-1;   // range (-pi:0) | |
|             tmp.head(nhead) = src.head(nhead); | |
|             tmp.tail(ntail) = src.tail(ntail); | |
|             if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it | |
|               tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*src_type(.5); | |
|             }else{ // expanding -- split the old Nyquist bin into two halves | |
|               tmp(nhead) = src(nhead) * src_type(.5); | |
|               tmp(tmp.size()-nhead) = tmp(nhead); | |
|             } | |
|           } | |
|         }else{ | |
|           tmp = src; | |
|         } | |
|         inv( &dst[0],&tmp[0], nfft); | |
|       }else{ | |
|         inv( &dst[0],&src[0], nfft); | |
|       } | |
|     } | |
| 
 | |
|     template <typename _Output> | |
|     inline | |
|     void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1) | |
|     { | |
|       if (nfft<1) | |
|         nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size(); | |
|       dst.resize( nfft ); | |
|       inv( &dst[0],&src[0],nfft); | |
|     } | |
| 
 | |
| 
 | |
|     /* | |
|     // TODO: multi-dimensional FFTs | |
|     inline  | |
|     void inv2(Complex * dst, const Complex * src, int n0,int n1) | |
|     { | |
|       m_impl.inv2(dst,src,n0,n1); | |
|       if ( HasFlag( Unscaled ) == false) | |
|           scale(dst,1./(n0*n1),n0*n1); | |
|     } | |
|   */ | |
| 
 | |
|     inline | |
|     impl_type & impl() {return m_impl;} | |
|   private: | |
| 
 | |
|     template <typename T_Data> | |
|     inline | |
|     void scale(T_Data * x,Scalar s,Index nx) | |
|     { | |
| #if 1 | |
|       for (int k=0;k<nx;++k) | |
|         *x++ *= s; | |
| #else | |
|       if ( ((ptrdiff_t)x) & 15 ) | |
|         Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s; | |
|       else | |
|         Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s; | |
|          //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; | |
| #endif   | |
|     } | |
| 
 | |
|     inline | |
|     void ReflectSpectrum(Complex * freq, Index nfft) | |
|     { | |
|       // create the implicit right-half spectrum (conjugate-mirror of the left-half) | |
|       Index nhbins=(nfft>>1)+1; | |
|       for (Index k=nhbins;k < nfft; ++k ) | |
|         freq[k] = conj(freq[nfft-k]); | |
|     } | |
| 
 | |
|     impl_type m_impl; | |
|     int m_flag; | |
| }; | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc>  | |
| template<typename T_DestMat> inline  | |
| void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const | |
| { | |
|     m_ifc.fwd( dst, m_src, m_nfft); | |
| } | |
| 
 | |
| template<typename T_SrcMat,typename T_FftIfc>  | |
| template<typename T_DestMat> inline  | |
| void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const | |
| { | |
|     m_ifc.inv( dst, m_src, m_nfft); | |
| } | |
| 
 | |
| } | |
| #endif | |
| /* vim: set filetype=cpp et sw=2 ts=2 ai: */
 |