You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							438 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							438 lines
						
					
					
						
							13 KiB
						
					
					
				| /* chpmv.f -- translated by f2c (version 20100827). | |
|    You must link the resulting object file with libf2c: | |
| 	on Microsoft Windows system, link with libf2c.lib; | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm | |
| 	-- in that order, at the end of the command line, as in | |
| 		cc *.o -lf2c -lm | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | |
|  | |
| 		http://www.netlib.org/f2c/libf2c.zip | |
| */ | |
| 
 | |
| #include "datatypes.h" | |
|  | |
| /* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex * | |
| 	ap, complex *x, integer *incx, complex *beta, complex *y, integer * | |
| 	incy, ftnlen uplo_len) | |
| { | |
|     /* System generated locals */ | |
|     integer i__1, i__2, i__3, i__4, i__5; | |
|     real r__1; | |
|     complex q__1, q__2, q__3, q__4; | |
| 
 | |
|     /* Builtin functions */ | |
|     void r_cnjg(complex *, complex *); | |
| 
 | |
|     /* Local variables */ | |
|     integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; | |
|     complex temp1, temp2; | |
|     extern logical lsame_(char *, char *, ftnlen, ftnlen); | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); | |
| 
 | |
| /*     .. Scalar Arguments .. */ | |
| /*     .. */ | |
| /*     .. Array Arguments .. */ | |
| /*     .. */ | |
| 
 | |
| /*  Purpose */ | |
| /*  ======= */ | |
| 
 | |
| /*  CHPMV  performs the matrix-vector operation */ | |
| 
 | |
| /*     y := alpha*A*x + beta*y, */ | |
| 
 | |
| /*  where alpha and beta are scalars, x and y are n element vectors and */ | |
| /*  A is an n by n hermitian matrix, supplied in packed form. */ | |
| 
 | |
| /*  Arguments */ | |
| /*  ========== */ | |
| 
 | |
| /*  UPLO   - CHARACTER*1. */ | |
| /*           On entry, UPLO specifies whether the upper or lower */ | |
| /*           triangular part of the matrix A is supplied in the packed */ | |
| /*           array AP as follows: */ | |
| 
 | |
| /*              UPLO = 'U' or 'u'   The upper triangular part of A is */ | |
| /*                                  supplied in AP. */ | |
| 
 | |
| /*              UPLO = 'L' or 'l'   The lower triangular part of A is */ | |
| /*                                  supplied in AP. */ | |
| 
 | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  N      - INTEGER. */ | |
| /*           On entry, N specifies the order of the matrix A. */ | |
| /*           N must be at least zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  ALPHA  - COMPLEX         . */ | |
| /*           On entry, ALPHA specifies the scalar alpha. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  AP     - COMPLEX          array of DIMENSION at least */ | |
| /*           ( ( n*( n + 1 ) )/2 ). */ | |
| /*           Before entry with UPLO = 'U' or 'u', the array AP must */ | |
| /*           contain the upper triangular part of the hermitian matrix */ | |
| /*           packed sequentially, column by column, so that AP( 1 ) */ | |
| /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ | |
| /*           and a( 2, 2 ) respectively, and so on. */ | |
| /*           Before entry with UPLO = 'L' or 'l', the array AP must */ | |
| /*           contain the lower triangular part of the hermitian matrix */ | |
| /*           packed sequentially, column by column, so that AP( 1 ) */ | |
| /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ | |
| /*           and a( 3, 1 ) respectively, and so on. */ | |
| /*           Note that the imaginary parts of the diagonal elements need */ | |
| /*           not be set and are assumed to be zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  X      - COMPLEX          array of dimension at least */ | |
| /*           ( 1 + ( n - 1 )*abs( INCX ) ). */ | |
| /*           Before entry, the incremented array X must contain the n */ | |
| /*           element vector x. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  INCX   - INTEGER. */ | |
| /*           On entry, INCX specifies the increment for the elements of */ | |
| /*           X. INCX must not be zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  BETA   - COMPLEX         . */ | |
| /*           On entry, BETA specifies the scalar beta. When BETA is */ | |
| /*           supplied as zero then Y need not be set on input. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  Y      - COMPLEX          array of dimension at least */ | |
| /*           ( 1 + ( n - 1 )*abs( INCY ) ). */ | |
| /*           Before entry, the incremented array Y must contain the n */ | |
| /*           element vector y. On exit, Y is overwritten by the updated */ | |
| /*           vector y. */ | |
| 
 | |
| /*  INCY   - INTEGER. */ | |
| /*           On entry, INCY specifies the increment for the elements of */ | |
| /*           Y. INCY must not be zero. */ | |
| /*           Unchanged on exit. */ | |
| 
 | |
| /*  Further Details */ | |
| /*  =============== */ | |
| 
 | |
| /*  Level 2 Blas routine. */ | |
| 
 | |
| /*  -- Written on 22-October-1986. */ | |
| /*     Jack Dongarra, Argonne National Lab. */ | |
| /*     Jeremy Du Croz, Nag Central Office. */ | |
| /*     Sven Hammarling, Nag Central Office. */ | |
| /*     Richard Hanson, Sandia National Labs. */ | |
| 
 | |
| /*  ===================================================================== */ | |
| 
 | |
| /*     .. Parameters .. */ | |
| /*     .. */ | |
| /*     .. Local Scalars .. */ | |
| /*     .. */ | |
| /*     .. External Functions .. */ | |
| /*     .. */ | |
| /*     .. External Subroutines .. */ | |
| /*     .. */ | |
| /*     .. Intrinsic Functions .. */ | |
| /*     .. */ | |
| 
 | |
| /*     Test the input parameters. */ | |
| 
 | |
|     /* Parameter adjustments */ | |
|     --y; | |
|     --x; | |
|     --ap; | |
| 
 | |
|     /* Function Body */ | |
|     info = 0; | |
|     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( | |
| 	    ftnlen)1, (ftnlen)1)) { | |
| 	info = 1; | |
|     } else if (*n < 0) { | |
| 	info = 2; | |
|     } else if (*incx == 0) { | |
| 	info = 6; | |
|     } else if (*incy == 0) { | |
| 	info = 9; | |
|     } | |
|     if (info != 0) { | |
| 	xerbla_("CHPMV ", &info, (ftnlen)6); | |
| 	return 0; | |
|     } | |
| 
 | |
| /*     Quick return if possible. */ | |
| 
 | |
|     if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&  | |
|                                                            beta->i == 0.f))) { | |
| 	return 0; | |
|     } | |
| 
 | |
| /*     Set up the start points in  X  and  Y. */ | |
| 
 | |
|     if (*incx > 0) { | |
| 	kx = 1; | |
|     } else { | |
| 	kx = 1 - (*n - 1) * *incx; | |
|     } | |
|     if (*incy > 0) { | |
| 	ky = 1; | |
|     } else { | |
| 	ky = 1 - (*n - 1) * *incy; | |
|     } | |
| 
 | |
| /*     Start the operations. In this version the elements of the array AP */ | |
| /*     are accessed sequentially with one pass through AP. */ | |
| 
 | |
| /*     First form  y := beta*y. */ | |
| 
 | |
|     if (beta->r != 1.f || beta->i != 0.f) { | |
| 	if (*incy == 1) { | |
| 	    if (beta->r == 0.f && beta->i == 0.f) { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = i__; | |
| 		    y[i__2].r = 0.f, y[i__2].i = 0.f; | |
| /* L10: */ | |
| 		} | |
| 	    } else { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = i__; | |
| 		    i__3 = i__; | |
| 		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,  | |
| 			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] | |
| 			    .r; | |
| 		    y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| /* L20: */ | |
| 		} | |
| 	    } | |
| 	} else { | |
| 	    iy = ky; | |
| 	    if (beta->r == 0.f && beta->i == 0.f) { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = iy; | |
| 		    y[i__2].r = 0.f, y[i__2].i = 0.f; | |
| 		    iy += *incy; | |
| /* L30: */ | |
| 		} | |
| 	    } else { | |
| 		i__1 = *n; | |
| 		for (i__ = 1; i__ <= i__1; ++i__) { | |
| 		    i__2 = iy; | |
| 		    i__3 = iy; | |
| 		    q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,  | |
| 			    q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] | |
| 			    .r; | |
| 		    y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		    iy += *incy; | |
| /* L40: */ | |
| 		} | |
| 	    } | |
| 	} | |
|     } | |
|     if (alpha->r == 0.f && alpha->i == 0.f) { | |
| 	return 0; | |
|     } | |
|     kk = 1; | |
|     if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { | |
| 
 | |
| /*        Form  y  when AP contains the upper triangle. */ | |
| 
 | |
| 	if (*incx == 1 && *incy == 1) { | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__2 = j; | |
| 		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | |
| 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r; | |
| 		temp1.r = q__1.r, temp1.i = q__1.i; | |
| 		temp2.r = 0.f, temp2.i = 0.f; | |
| 		k = kk; | |
| 		i__2 = j - 1; | |
| 		for (i__ = 1; i__ <= i__2; ++i__) { | |
| 		    i__3 = i__; | |
| 		    i__4 = i__; | |
| 		    i__5 = k; | |
| 		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,  | |
| 			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | |
| 			    .r; | |
| 		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | |
| 		    y[i__3].r = q__1.r, y[i__3].i = q__1.i; | |
| 		    r_cnjg(&q__3, &ap[k]); | |
| 		    i__3 = i__; | |
| 		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | |
| 			     q__3.r * x[i__3].i + q__3.i * x[i__3].r; | |
| 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | |
| 		    temp2.r = q__1.r, temp2.i = q__1.i; | |
| 		    ++k; | |
| /* L50: */ | |
| 		} | |
| 		i__2 = j; | |
| 		i__3 = j; | |
| 		i__4 = kk + j - 1; | |
| 		r__1 = ap[i__4].r; | |
| 		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; | |
| 		q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; | |
| 		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; | |
| 		y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		kk += j; | |
| /* L60: */ | |
| 	    } | |
| 	} else { | |
| 	    jx = kx; | |
| 	    jy = ky; | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__2 = jx; | |
| 		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | |
| 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r; | |
| 		temp1.r = q__1.r, temp1.i = q__1.i; | |
| 		temp2.r = 0.f, temp2.i = 0.f; | |
| 		ix = kx; | |
| 		iy = ky; | |
| 		i__2 = kk + j - 2; | |
| 		for (k = kk; k <= i__2; ++k) { | |
| 		    i__3 = iy; | |
| 		    i__4 = iy; | |
| 		    i__5 = k; | |
| 		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,  | |
| 			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | |
| 			    .r; | |
| 		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | |
| 		    y[i__3].r = q__1.r, y[i__3].i = q__1.i; | |
| 		    r_cnjg(&q__3, &ap[k]); | |
| 		    i__3 = ix; | |
| 		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | |
| 			     q__3.r * x[i__3].i + q__3.i * x[i__3].r; | |
| 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | |
| 		    temp2.r = q__1.r, temp2.i = q__1.i; | |
| 		    ix += *incx; | |
| 		    iy += *incy; | |
| /* L70: */ | |
| 		} | |
| 		i__2 = jy; | |
| 		i__3 = jy; | |
| 		i__4 = kk + j - 1; | |
| 		r__1 = ap[i__4].r; | |
| 		q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; | |
| 		q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; | |
| 		q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; | |
| 		y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		jx += *incx; | |
| 		jy += *incy; | |
| 		kk += j; | |
| /* L80: */ | |
| 	    } | |
| 	} | |
|     } else { | |
| 
 | |
| /*        Form  y  when AP contains the lower triangle. */ | |
| 
 | |
| 	if (*incx == 1 && *incy == 1) { | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__2 = j; | |
| 		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | |
| 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r; | |
| 		temp1.r = q__1.r, temp1.i = q__1.i; | |
| 		temp2.r = 0.f, temp2.i = 0.f; | |
| 		i__2 = j; | |
| 		i__3 = j; | |
| 		i__4 = kk; | |
| 		r__1 = ap[i__4].r; | |
| 		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; | |
| 		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | |
| 		y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		k = kk + 1; | |
| 		i__2 = *n; | |
| 		for (i__ = j + 1; i__ <= i__2; ++i__) { | |
| 		    i__3 = i__; | |
| 		    i__4 = i__; | |
| 		    i__5 = k; | |
| 		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,  | |
| 			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | |
| 			    .r; | |
| 		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | |
| 		    y[i__3].r = q__1.r, y[i__3].i = q__1.i; | |
| 		    r_cnjg(&q__3, &ap[k]); | |
| 		    i__3 = i__; | |
| 		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | |
| 			     q__3.r * x[i__3].i + q__3.i * x[i__3].r; | |
| 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | |
| 		    temp2.r = q__1.r, temp2.i = q__1.i; | |
| 		    ++k; | |
| /* L90: */ | |
| 		} | |
| 		i__2 = j; | |
| 		i__3 = j; | |
| 		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | |
| 		y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		kk += *n - j + 1; | |
| /* L100: */ | |
| 	    } | |
| 	} else { | |
| 	    jx = kx; | |
| 	    jy = ky; | |
| 	    i__1 = *n; | |
| 	    for (j = 1; j <= i__1; ++j) { | |
| 		i__2 = jx; | |
| 		q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | |
| 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r; | |
| 		temp1.r = q__1.r, temp1.i = q__1.i; | |
| 		temp2.r = 0.f, temp2.i = 0.f; | |
| 		i__2 = jy; | |
| 		i__3 = jy; | |
| 		i__4 = kk; | |
| 		r__1 = ap[i__4].r; | |
| 		q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; | |
| 		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | |
| 		y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		ix = jx; | |
| 		iy = jy; | |
| 		i__2 = kk + *n - j; | |
| 		for (k = kk + 1; k <= i__2; ++k) { | |
| 		    ix += *incx; | |
| 		    iy += *incy; | |
| 		    i__3 = iy; | |
| 		    i__4 = iy; | |
| 		    i__5 = k; | |
| 		    q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,  | |
| 			    q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | |
| 			    .r; | |
| 		    q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | |
| 		    y[i__3].r = q__1.r, y[i__3].i = q__1.i; | |
| 		    r_cnjg(&q__3, &ap[k]); | |
| 		    i__3 = ix; | |
| 		    q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | |
| 			     q__3.r * x[i__3].i + q__3.i * x[i__3].r; | |
| 		    q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | |
| 		    temp2.r = q__1.r, temp2.i = q__1.i; | |
| /* L110: */ | |
| 		} | |
| 		i__2 = jy; | |
| 		i__3 = jy; | |
| 		q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =  | |
| 			alpha->r * temp2.i + alpha->i * temp2.r; | |
| 		q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | |
| 		y[i__2].r = q__1.r, y[i__2].i = q__1.i; | |
| 		jx += *incx; | |
| 		jy += *incy; | |
| 		kk += *n - j + 1; | |
| /* L120: */ | |
| 	    } | |
| 	} | |
|     } | |
| 
 | |
|     return 0; | |
| 
 | |
| /*     End of CHPMV . */ | |
| 
 | |
| } /* chpmv_ */ | |
| 
 |