You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
4.3 KiB
136 lines
4.3 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "matrix_functions.h"
|
|
|
|
template<typename T>
|
|
void test2dRotation(double tol)
|
|
{
|
|
Matrix<T,2,2> A, B, C;
|
|
T angle, c, s;
|
|
|
|
A << 0, 1, -1, 0;
|
|
MatrixPower<Matrix<T,2,2> > Apow(A);
|
|
|
|
for (int i=0; i<=20; ++i) {
|
|
angle = pow(10, (i-10) / 5.);
|
|
c = std::cos(angle);
|
|
s = std::sin(angle);
|
|
B << c, s, -s, c;
|
|
|
|
C = Apow(std::ldexp(angle,1) / M_PI);
|
|
std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
|
|
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void test2dHyperbolicRotation(double tol)
|
|
{
|
|
Matrix<std::complex<T>,2,2> A, B, C;
|
|
T angle, ch = std::cosh((T)1);
|
|
std::complex<T> ish(0, std::sinh((T)1));
|
|
|
|
A << ch, ish, -ish, ch;
|
|
MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);
|
|
|
|
for (int i=0; i<=20; ++i) {
|
|
angle = std::ldexp(static_cast<T>(i-10), -1);
|
|
ch = std::cosh(angle);
|
|
ish = std::complex<T>(0, std::sinh(angle));
|
|
B << ch, ish, -ish, ch;
|
|
|
|
C = Apow(angle);
|
|
std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
|
|
VERIFY(C.isApprox(B, static_cast<T>(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testExponentLaws(const MatrixType& m, double tol)
|
|
{
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType m1, m2, m3, m4, m5;
|
|
RealScalar x, y;
|
|
|
|
for (int i=0; i<g_repeat; ++i) {
|
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
MatrixPower<MatrixType> mpow(m1);
|
|
|
|
x = internal::random<RealScalar>();
|
|
y = internal::random<RealScalar>();
|
|
m2 = mpow(x);
|
|
m3 = mpow(y);
|
|
|
|
m4 = mpow(x+y);
|
|
m5.noalias() = m2 * m3;
|
|
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
|
|
|
|
m4 = mpow(x*y);
|
|
m5 = m2.pow(y);
|
|
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
|
|
|
|
m4 = (std::abs(x) * m1).pow(y);
|
|
m5 = std::pow(std::abs(x), y) * m3;
|
|
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType, typename VectorType>
|
|
void testProduct(const MatrixType& m, const VectorType& v, double tol)
|
|
{
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType m1;
|
|
VectorType v1, v2, v3;
|
|
RealScalar p;
|
|
|
|
for (int i=0; i<g_repeat; ++i) {
|
|
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
MatrixPower<MatrixType> mpow(m1);
|
|
|
|
v1 = VectorType::Random(v.rows(), v.cols());
|
|
p = internal::random<RealScalar>();
|
|
|
|
v2.noalias() = mpow(p) * v1;
|
|
v3.noalias() = mpow(p).eval() * v1;
|
|
std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3) << '\n';
|
|
VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType, typename VectorType>
|
|
void testMatrixVector(const MatrixType& m, const VectorType& v, double tol)
|
|
{
|
|
testExponentLaws(m,tol);
|
|
testProduct(m,v,tol);
|
|
}
|
|
|
|
void test_matrix_power()
|
|
{
|
|
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
|
|
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
|
|
typedef Matrix<long double,Dynamic,1> VectorXe;
|
|
|
|
CALL_SUBTEST_2(test2dRotation<double>(1e-13));
|
|
CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
|
|
CALL_SUBTEST_9(test2dRotation<long double>(1e-13));
|
|
CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
|
|
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
|
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
|
|
|
CALL_SUBTEST_2(testMatrixVector(Matrix2d(), Vector2d(), 1e-13));
|
|
CALL_SUBTEST_7(testMatrixVector(Matrix3dRowMajor(), MatrixXd(3,5), 1e-13));
|
|
CALL_SUBTEST_3(testMatrixVector(Matrix4cd(), Vector4cd(), 1e-13));
|
|
CALL_SUBTEST_4(testMatrixVector(MatrixXd(8,8), VectorXd(8), 1e-13));
|
|
CALL_SUBTEST_1(testMatrixVector(Matrix2f(), Vector2f(), 1e-4));
|
|
CALL_SUBTEST_5(testMatrixVector(Matrix3cf(), Vector3cf(), 1e-4));
|
|
CALL_SUBTEST_8(testMatrixVector(Matrix4f(), Vector4f(), 1e-4));
|
|
CALL_SUBTEST_6(testMatrixVector(MatrixXf(8,8), VectorXf(8), 1e-4));
|
|
CALL_SUBTEST_9(testMatrixVector(MatrixXe(7,7), VectorXe(7), 1e-13));
|
|
}
|