You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							114 lines
						
					
					
						
							2.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							114 lines
						
					
					
						
							2.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | |
|  | |
| #include <stdio.h> | |
|  | |
| #include "main.h" | |
| #include <unsupported/Eigen/NumericalDiff> | |
|      | |
| // Generic functor | |
| template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> | |
| struct Functor | |
| { | |
|   typedef _Scalar Scalar; | |
|   enum { | |
|     InputsAtCompileTime = NX, | |
|     ValuesAtCompileTime = NY | |
|   }; | |
|   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; | |
|   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; | |
|   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; | |
|    | |
|   int m_inputs, m_values; | |
|    | |
|   Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | |
|   Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {} | |
|    | |
|   int inputs() const { return m_inputs; } | |
|   int values() const { return m_values; } | |
| 
 | |
| }; | |
| 
 | |
| struct my_functor : Functor<double> | |
| { | |
|     my_functor(void): Functor<double>(3,15) {} | |
|     int operator()(const VectorXd &x, VectorXd &fvec) const | |
|     { | |
|         double tmp1, tmp2, tmp3; | |
|         double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, | |
|             3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; | |
| 
 | |
|         for (int i = 0; i < values(); i++) | |
|         { | |
|             tmp1 = i+1; | |
|             tmp2 = 16 - i - 1; | |
|             tmp3 = (i>=8)? tmp2 : tmp1; | |
|             fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); | |
|         } | |
|         return 0; | |
|     } | |
| 
 | |
|     int actual_df(const VectorXd &x, MatrixXd &fjac) const | |
|     { | |
|         double tmp1, tmp2, tmp3, tmp4; | |
|         for (int i = 0; i < values(); i++) | |
|         { | |
|             tmp1 = i+1; | |
|             tmp2 = 16 - i - 1; | |
|             tmp3 = (i>=8)? tmp2 : tmp1; | |
|             tmp4 = (x[1]*tmp2 + x[2]*tmp3); tmp4 = tmp4*tmp4; | |
|             fjac(i,0) = -1; | |
|             fjac(i,1) = tmp1*tmp2/tmp4; | |
|             fjac(i,2) = tmp1*tmp3/tmp4; | |
|         } | |
|         return 0; | |
|     } | |
| }; | |
| 
 | |
| void test_forward() | |
| { | |
|     VectorXd x(3); | |
|     MatrixXd jac(15,3); | |
|     MatrixXd actual_jac(15,3); | |
|     my_functor functor; | |
| 
 | |
|     x << 0.082, 1.13, 2.35; | |
| 
 | |
|     // real one  | |
|     functor.actual_df(x, actual_jac); | |
| //    std::cout << actual_jac << std::endl << std::endl; | |
|  | |
|     // using NumericalDiff | |
|     NumericalDiff<my_functor> numDiff(functor); | |
|     numDiff.df(x, jac); | |
| //    std::cout << jac << std::endl; | |
|  | |
|     VERIFY_IS_APPROX(jac, actual_jac); | |
| } | |
| 
 | |
| void test_central() | |
| { | |
|     VectorXd x(3); | |
|     MatrixXd jac(15,3); | |
|     MatrixXd actual_jac(15,3); | |
|     my_functor functor; | |
| 
 | |
|     x << 0.082, 1.13, 2.35; | |
| 
 | |
|     // real one  | |
|     functor.actual_df(x, actual_jac); | |
| 
 | |
|     // using NumericalDiff | |
|     NumericalDiff<my_functor,Central> numDiff(functor); | |
|     numDiff.df(x, jac); | |
| 
 | |
|     VERIFY_IS_APPROX(jac, actual_jac); | |
| } | |
| 
 | |
| void test_NumericalDiff() | |
| { | |
|     CALL_SUBTEST(test_forward()); | |
|     CALL_SUBTEST(test_central()); | |
| }
 |