You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							149 lines
						
					
					
						
							3.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							149 lines
						
					
					
						
							3.8 KiB
						
					
					
				| 
 | |
| #include <Eigen/Sparse> | |
| #include <bench/BenchTimer.h> | |
| #include <set> | |
|  | |
| using namespace std; | |
| using namespace Eigen; | |
| using namespace Eigen; | |
| 
 | |
| #ifndef SIZE | |
| #define SIZE 1024 | |
| #endif | |
|  | |
| #ifndef DENSITY | |
| #define DENSITY 0.01 | |
| #endif | |
|  | |
| #ifndef SCALAR | |
| #define SCALAR double | |
| #endif | |
|  | |
| typedef SCALAR Scalar; | |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; | |
| typedef SparseMatrix<Scalar> EigenSparseMatrix; | |
| 
 | |
| void fillMatrix(float density, int rows, int cols,  EigenSparseMatrix& dst) | |
| { | |
|   dst.reserve(double(rows)*cols*density); | |
|   for(int j = 0; j < cols; j++) | |
|   { | |
|     for(int i = 0; i < rows; i++) | |
|     { | |
|       Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0; | |
|       if (v!=0) | |
|         dst.insert(i,j) = v; | |
|     } | |
|   } | |
|   dst.finalize(); | |
| } | |
| 
 | |
| void fillMatrix2(int nnzPerCol, int rows, int cols,  EigenSparseMatrix& dst) | |
| { | |
| //   std::cout << "alloc " << nnzPerCol*cols << "\n"; | |
|   dst.reserve(nnzPerCol*cols); | |
|   for(int j = 0; j < cols; j++) | |
|   { | |
|     std::set<int> aux; | |
|     for(int i = 0; i < nnzPerCol; i++) | |
|     { | |
|       int k = internal::random<int>(0,rows-1); | |
|       while (aux.find(k)!=aux.end()) | |
|         k = internal::random<int>(0,rows-1); | |
|       aux.insert(k); | |
| 
 | |
|       dst.insert(k,j) = internal::random<Scalar>(); | |
|     } | |
|   } | |
|   dst.finalize(); | |
| } | |
| 
 | |
| void eiToDense(const EigenSparseMatrix& src, DenseMatrix& dst) | |
| { | |
|   dst.setZero(); | |
|   for (int j=0; j<src.cols(); ++j) | |
|     for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it) | |
|       dst(it.index(),j) = it.value(); | |
| } | |
| 
 | |
| #ifndef NOGMM | |
| #include "gmm/gmm.h" | |
| typedef gmm::csc_matrix<Scalar> GmmSparse; | |
| typedef gmm::col_matrix< gmm::wsvector<Scalar> > GmmDynSparse; | |
| void eiToGmm(const EigenSparseMatrix& src, GmmSparse& dst) | |
| { | |
|   GmmDynSparse tmp(src.rows(), src.cols()); | |
|   for (int j=0; j<src.cols(); ++j) | |
|     for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it) | |
|       tmp(it.index(),j) = it.value(); | |
|   gmm::copy(tmp, dst); | |
| } | |
| #endif | |
|  | |
| #ifndef NOMTL | |
| #include <boost/numeric/mtl/mtl.hpp> | |
| typedef mtl::compressed2D<Scalar, mtl::matrix::parameters<mtl::tag::col_major> > MtlSparse; | |
| typedef mtl::compressed2D<Scalar, mtl::matrix::parameters<mtl::tag::row_major> > MtlSparseRowMajor; | |
| void eiToMtl(const EigenSparseMatrix& src, MtlSparse& dst) | |
| { | |
|   mtl::matrix::inserter<MtlSparse> ins(dst); | |
|   for (int j=0; j<src.cols(); ++j) | |
|     for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it) | |
|       ins[it.index()][j] = it.value(); | |
| } | |
| #endif | |
|  | |
| #ifdef CSPARSE | |
| extern "C" { | |
| #include "cs.h" | |
| } | |
| void eiToCSparse(const EigenSparseMatrix& src, cs* &dst) | |
| { | |
|   cs* aux = cs_spalloc (0, 0, 1, 1, 1); | |
|   for (int j=0; j<src.cols(); ++j) | |
|     for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it) | |
|       if (!cs_entry(aux, it.index(), j, it.value())) | |
|       { | |
|         std::cout << "cs_entry error\n"; | |
|         exit(2); | |
|       } | |
|    dst = cs_compress(aux); | |
| //    cs_spfree(aux); | |
| } | |
| #endif // CSPARSE | |
|  | |
| #ifndef NOUBLAS | |
| #include <boost/numeric/ublas/vector.hpp> | |
| #include <boost/numeric/ublas/matrix.hpp> | |
| #include <boost/numeric/ublas/io.hpp> | |
| #include <boost/numeric/ublas/triangular.hpp> | |
| #include <boost/numeric/ublas/vector_sparse.hpp> | |
| #include <boost/numeric/ublas/matrix_sparse.hpp> | |
| #include <boost/numeric/ublas/vector_of_vector.hpp> | |
| #include <boost/numeric/ublas/operation.hpp> | |
|  | |
| typedef boost::numeric::ublas::compressed_matrix<Scalar,boost::numeric::ublas::column_major> UBlasSparse; | |
| 
 | |
| void eiToUblas(const EigenSparseMatrix& src, UBlasSparse& dst) | |
| { | |
|   dst.resize(src.rows(), src.cols(), false); | |
|   for (int j=0; j<src.cols(); ++j) | |
|     for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it) | |
|       dst(it.index(),j) = it.value(); | |
| } | |
| 
 | |
| template <typename EigenType, typename UblasType> | |
| void eiToUblasVec(const EigenType& src, UblasType& dst) | |
| { | |
|   dst.resize(src.size()); | |
|   for (int j=0; j<src.size(); ++j) | |
|       dst[j] = src.coeff(j); | |
| } | |
| #endif | |
|  | |
| #ifdef OSKI | |
| extern "C" { | |
| #include <oski/oski.h> | |
| } | |
| #endif
 |