You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

75 lines
2.7 KiB

// nand multiplex system
// gxn/dxp 20/03/03
// U (correctly) performs a random permutation of the outputs of the previous stage
dtmc
const int N = 20; // number of inputs in each bundle
const int K = 2; // number of restorative stages
const int M = 2*K+1; // total number of multiplexing units
// parameters taken from the following paper
// A system architecture solution for unreliable nanoelectric devices
// J. Han & P. Jonker
// IEEEE trans. on nanotechnology vol 1(4) 2002
const double perr; //(0.02) probability nand works correctly
const double prob1; //(0.9) probability initial inputs are stimulated
// model whole system as a single module by resuing variables
// to decrease the state space
module multiplex
u : [1..M]; // number of stages
c : [0..N]; // counter (number of copies of the nand done)
s : [0..4]; // local state
// 0 - initial state
// 1 - set x inputs
// 2 - set y inputs
// 3 - set outputs
// 4 - done
z : [0..N]; // number of new outputs equal to 1
zx : [0..N]; // number of old outputs equal to 1
zy : [0..N]; // need second copy for y
// initially 9 since initially probability of stimulated state is 0.9
x : [0..1]; // value of first input
y : [0..1]; // value of second input
[] s=0 & (c<N) -> (s'=1); // do next nand if have not done N yet
[] s=0 & (c=N) & (u<M) -> (s'=1) & (zx'=z) & (zy'=z) & (z'=0) & (u'=u+1) & (c'=0); // move on to next u if not finished
[] s=0 & (c=N) & (u=M) -> (s'=4) & (zx'=0) & (zy'=0) & (x'=0) & (y'=0); // finished (so reset variables not needed to reduce state space)
// choose x permute selection (have zx stimulated inputs)
// note only need y to be random
[] s=1 & u=1 -> prob1 : (x'=1) & (s'=2) + (1-prob1) : (x'=0) & (s'=2); // initially random
[] s=1 & u>1 & zx>0 -> (x'=1) & (s'=2) & (zx'=zx-1);
[] s=1 & u>1 & zx=0 -> (x'=0) & (s'=2);
// choose x randomly from selection (have zy stimulated inputs)
[] s=2 & u=1 -> prob1 : (y'=1) & (s'=3) + (1-prob1) : (y'=0) & (s'=3); // initially random
[] s=2 & u>1 & zy<(N-c) & zy>0 -> zy/(N-c) : (y'=1) & (s'=3) & (zy'=zy-1) + 1-(zy/(N-c)) : (y'=0) & (s'=3);
[] s=2 & u>1 & zy=(N-c) & c<N -> 1 : (y'=1) & (s'=3) & (zy'=zy-1);
[] s=2 & u>1 & zy=0 -> 1 : (y'=0) & (s'=3);
// use nand gate
[] s=3 & z<N & c<N -> (1-perr) : (z'=z+(1-x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0) // not faulty
+ perr : (z'=z+(x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0); // von neumann fault
// [] s=3 & z<N -> (1-perr) : (z'=z+(1-x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0) // not faulty
// + perr : (z'=z+(x*y)) & (s'=0) & (c'=c+1) & (x'=0) & (y'=0); // von neumann fault
[] s=4 -> (s'=s);
endmodule
label "target" = s=4 & z/N<0.1;
// rewards: final value of gate
rewards
[] s=0 & (c=N) & (u=M) : z/N;
endrewards