You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							12 KiB
						
					
					
				| #include "gtest/gtest.h" | |
| #include "storm-config.h" | |
|  | |
| #include "src/storage/dd/DdManager.h" | |
| #include "src/utility/solver.h" | |
| #include "src/settings/SettingsManager.h" | |
|  | |
| #include "src/solver/SymbolicGameSolver.h" | |
| #include "src/settings/modules/NativeEquationSolverSettings.h" | |
|  | |
| TEST(FullySymbolicGameSolverTest, Solve_Cudd) { | |
|     // Create some variables. | |
|     std::shared_ptr<storm::dd::DdManager<storm::dd::DdType::CUDD>> manager(new storm::dd::DdManager<storm::dd::DdType::CUDD>()); | |
|     std::pair<storm::expressions::Variable, storm::expressions::Variable> state = manager->addMetaVariable("x", 1, 4); | |
|     std::pair<storm::expressions::Variable, storm::expressions::Variable> pl1 = manager->addMetaVariable("a", 0, 1); | |
|     std::pair<storm::expressions::Variable, storm::expressions::Variable> pl2 = manager->addMetaVariable("b", 0, 1); | |
| 
 | |
|     storm::dd::Bdd<storm::dd::DdType::CUDD> allRows = manager->getBddZero(); | |
|     std::set<storm::expressions::Variable> rowMetaVariables({state.first}); | |
|     std::set<storm::expressions::Variable> columnMetaVariables({state.second}); | |
|     std::vector<std::pair<storm::expressions::Variable, storm::expressions::Variable>> rowColumnMetaVariablePairs = {state}; | |
|     std::set<storm::expressions::Variable> player1Variables({pl1.first}); | |
|     std::set<storm::expressions::Variable> player2Variables({pl2.first}); | |
| 
 | |
|     // Construct simple game. | |
|     storm::dd::Add<storm::dd::DdType::CUDD, double> matrix = manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 2).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.6); | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 1).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.4); | |
| 
 | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 2).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 1).template toAdd<double>() * manager->getConstant(0.2); | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 3).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 1).template toAdd<double>() * manager->getConstant(0.8); | |
| 
 | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 3).template toAdd<double>() * manager->getEncoding(pl1.first, 1).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.5); | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 4).template toAdd<double>() * manager->getEncoding(pl1.first, 1).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.5); | |
|      | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 1).template toAdd<double>() * manager->getEncoding(pl1.first, 1).template toAdd<double>() * manager->getEncoding(pl2.first, 1).template toAdd<double>() * manager->getConstant<double>(1); | |
|      | |
|     std::unique_ptr<storm::utility::solver::SymbolicGameSolverFactory<storm::dd::DdType::CUDD, double>> solverFactory(new storm::utility::solver::SymbolicGameSolverFactory<storm::dd::DdType::CUDD, double>()); | |
|     std::unique_ptr<storm::solver::SymbolicGameSolver<storm::dd::DdType::CUDD>> solver = solverFactory->create(matrix, allRows, rowMetaVariables, columnMetaVariables, rowColumnMetaVariablePairs, player1Variables,player2Variables); | |
|      | |
|     // Create solution and target state vector. | |
|     storm::dd::Add<storm::dd::DdType::CUDD, double> x = manager->template getAddZero<double>(); | |
|     storm::dd::Add<storm::dd::DdType::CUDD, double> b = manager->getEncoding(state.first, 2).template toAdd<double>() + manager->getEncoding(state.first, 4).template toAdd<double>(); | |
|      | |
|     // Now solve the game with different strategies for the players. | |
|     storm::dd::Add<storm::dd::DdType::CUDD> result = solver->solveGame(storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
|      | |
|     x = manager->getAddZero<double>(); | |
|     result = solver->solveGame(storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0.5, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
|      | |
|     x = manager->getAddZero<double>(); | |
|     result = solver->solveGame(storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0.2, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
| 
 | |
|     x = manager->getAddZero<double>(); | |
|     result = solver->solveGame(storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0.99999892625817599, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
| } | |
| 
 | |
| TEST(FullySymbolicGameSolverTest, Solve_Sylvan) { | |
|     // Create some variables. | |
|     std::shared_ptr<storm::dd::DdManager<storm::dd::DdType::Sylvan>> manager(new storm::dd::DdManager<storm::dd::DdType::Sylvan>()); | |
|     std::pair<storm::expressions::Variable, storm::expressions::Variable> state = manager->addMetaVariable("x", 1, 4); | |
|     std::pair<storm::expressions::Variable, storm::expressions::Variable> pl1 = manager->addMetaVariable("a", 0, 1); | |
|     std::pair<storm::expressions::Variable, storm::expressions::Variable> pl2 = manager->addMetaVariable("b", 0, 1); | |
|      | |
|     storm::dd::Bdd<storm::dd::DdType::Sylvan> allRows = manager->getBddZero(); | |
|     std::set<storm::expressions::Variable> rowMetaVariables({state.first}); | |
|     std::set<storm::expressions::Variable> columnMetaVariables({state.second}); | |
|     std::vector<std::pair<storm::expressions::Variable, storm::expressions::Variable>> rowColumnMetaVariablePairs = {state}; | |
|     std::set<storm::expressions::Variable> player1Variables({pl1.first}); | |
|     std::set<storm::expressions::Variable> player2Variables({pl2.first}); | |
|      | |
|     // Construct simple game. | |
|     storm::dd::Add<storm::dd::DdType::Sylvan, double> matrix = manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 2).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.6); | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 1).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.4); | |
|      | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 2).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 1).template toAdd<double>() * manager->getConstant(0.2); | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 3).template toAdd<double>() * manager->getEncoding(pl1.first, 0).template toAdd<double>() * manager->getEncoding(pl2.first, 1).template toAdd<double>() * manager->getConstant(0.8); | |
|      | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 3).template toAdd<double>() * manager->getEncoding(pl1.first, 1).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.5); | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 4).template toAdd<double>() * manager->getEncoding(pl1.first, 1).template toAdd<double>() * manager->getEncoding(pl2.first, 0).template toAdd<double>() * manager->getConstant(0.5); | |
|      | |
|     matrix += manager->getEncoding(state.first, 1).template toAdd<double>() * manager->getEncoding(state.second, 1).template toAdd<double>() * manager->getEncoding(pl1.first, 1).template toAdd<double>() * manager->getEncoding(pl2.first, 1).template toAdd<double>() * manager->getConstant<double>(1); | |
|      | |
|     std::unique_ptr<storm::utility::solver::SymbolicGameSolverFactory<storm::dd::DdType::Sylvan, double>> solverFactory(new storm::utility::solver::SymbolicGameSolverFactory<storm::dd::DdType::Sylvan, double>()); | |
|     std::unique_ptr<storm::solver::SymbolicGameSolver<storm::dd::DdType::Sylvan>> solver = solverFactory->create(matrix, allRows, rowMetaVariables, columnMetaVariables, rowColumnMetaVariablePairs, player1Variables,player2Variables); | |
|      | |
|     // Create solution and target state vector. | |
|     storm::dd::Add<storm::dd::DdType::Sylvan, double> x = manager->template getAddZero<double>(); | |
|     storm::dd::Add<storm::dd::DdType::Sylvan, double> b = manager->getEncoding(state.first, 2).template toAdd<double>() + manager->getEncoding(state.first, 4).template toAdd<double>(); | |
|      | |
|     // Now solve the game with different strategies for the players. | |
|     storm::dd::Add<storm::dd::DdType::Sylvan> result = solver->solveGame(storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Minimize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
|      | |
|     x = manager->getAddZero<double>(); | |
|     result = solver->solveGame(storm::OptimizationDirection::Minimize, storm::OptimizationDirection::Maximize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0.5, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
|      | |
|     x = manager->getAddZero<double>(); | |
|     result = solver->solveGame(storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Minimize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0.2, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
|      | |
|     x = manager->getAddZero<double>(); | |
|     result = solver->solveGame(storm::OptimizationDirection::Maximize, storm::OptimizationDirection::Maximize, x, b); | |
|     result *= manager->getEncoding(state.first, 1).template toAdd<double>(); | |
|     result = result.sumAbstract({state.first}); | |
|     EXPECT_NEAR(0.99999892625817599, result.getValue(), storm::settings::getModule<storm::settings::modules::NativeEquationSolverSettings>().getPrecision()); | |
| }
 |