You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							118 lines
						
					
					
						
							3.4 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							118 lines
						
					
					
						
							3.4 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> void matrixVisitor(const MatrixType& p) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::Index Index; | |
| 
 | |
|   Index rows = p.rows(); | |
|   Index cols = p.cols(); | |
| 
 | |
|   // construct a random matrix where all coefficients are different | |
|   MatrixType m; | |
|   m = MatrixType::Random(rows, cols); | |
|   for(Index i = 0; i < m.size(); i++) | |
|     for(Index i2 = 0; i2 < i; i2++) | |
|       while(m(i) == m(i2)) // yes, == | |
|         m(i) = internal::random<Scalar>(); | |
|    | |
|   Scalar minc = Scalar(1000), maxc = Scalar(-1000); | |
|   Index minrow=0,mincol=0,maxrow=0,maxcol=0; | |
|   for(Index j = 0; j < cols; j++) | |
|   for(Index i = 0; i < rows; i++) | |
|   { | |
|     if(m(i,j) < minc) | |
|     { | |
|       minc = m(i,j); | |
|       minrow = i; | |
|       mincol = j; | |
|     } | |
|     if(m(i,j) > maxc) | |
|     { | |
|       maxc = m(i,j); | |
|       maxrow = i; | |
|       maxcol = j; | |
|     } | |
|   } | |
|   Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; | |
|   Scalar eigen_minc, eigen_maxc; | |
|   eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); | |
|   eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); | |
|   VERIFY(minrow == eigen_minrow); | |
|   VERIFY(maxrow == eigen_maxrow); | |
|   VERIFY(mincol == eigen_mincol); | |
|   VERIFY(maxcol == eigen_maxcol); | |
|   VERIFY_IS_APPROX(minc, eigen_minc); | |
|   VERIFY_IS_APPROX(maxc, eigen_maxc); | |
|   VERIFY_IS_APPROX(minc, m.minCoeff()); | |
|   VERIFY_IS_APPROX(maxc, m.maxCoeff()); | |
| } | |
| 
 | |
| template<typename VectorType> void vectorVisitor(const VectorType& w) | |
| { | |
|   typedef typename VectorType::Scalar Scalar; | |
|   typedef typename VectorType::Index Index; | |
| 
 | |
|   Index size = w.size(); | |
| 
 | |
|   // construct a random vector where all coefficients are different | |
|   VectorType v; | |
|   v = VectorType::Random(size); | |
|   for(Index i = 0; i < size; i++) | |
|     for(Index i2 = 0; i2 < i; i2++) | |
|       while(v(i) == v(i2)) // yes, == | |
|         v(i) = internal::random<Scalar>(); | |
|    | |
|   Scalar minc = Scalar(1000), maxc = Scalar(-1000); | |
|   Index minidx=0,maxidx=0; | |
|   for(Index i = 0; i < size; i++) | |
|   { | |
|     if(v(i) < minc) | |
|     { | |
|       minc = v(i); | |
|       minidx = i; | |
|     } | |
|     if(v(i) > maxc) | |
|     { | |
|       maxc = v(i); | |
|       maxidx = i; | |
|     } | |
|   } | |
|   Index eigen_minidx, eigen_maxidx; | |
|   Scalar eigen_minc, eigen_maxc; | |
|   eigen_minc = v.minCoeff(&eigen_minidx); | |
|   eigen_maxc = v.maxCoeff(&eigen_maxidx); | |
|   VERIFY(minidx == eigen_minidx); | |
|   VERIFY(maxidx == eigen_maxidx); | |
|   VERIFY_IS_APPROX(minc, eigen_minc); | |
|   VERIFY_IS_APPROX(maxc, eigen_maxc); | |
|   VERIFY_IS_APPROX(minc, v.minCoeff()); | |
|   VERIFY_IS_APPROX(maxc, v.maxCoeff()); | |
| } | |
| 
 | |
| void test_visitor() | |
| { | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) ); | |
|     CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); | |
|     CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); | |
|     CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); | |
|     CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) ); | |
|     CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); | |
|   } | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); | |
|     CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) ); | |
|     CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) ); | |
|     CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) ); | |
|   } | |
| }
 |