You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							183 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							183 lines
						
					
					
						
							5.7 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| #include <Eigen/Core> | |
| #include <Eigen/Geometry> | |
|  | |
| #include <Eigen/LU> // required for MatrixBase::determinant | |
| #include <Eigen/SVD> // required for SVD | |
|  | |
| using namespace Eigen; | |
| 
 | |
| //  Constructs a random matrix from the unitary group U(size). | |
| template <typename T> | |
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size) | |
| { | |
|   typedef T Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType; | |
| 
 | |
|   MatrixType Q; | |
| 
 | |
|   int max_tries = 40; | |
|   double is_unitary = false; | |
| 
 | |
|   while (!is_unitary && max_tries > 0) | |
|   { | |
|     // initialize random matrix | |
|     Q = MatrixType::Random(size, size); | |
| 
 | |
|     // orthogonalize columns using the Gram-Schmidt algorithm | |
|     for (int col = 0; col < size; ++col) | |
|     { | |
|       typename MatrixType::ColXpr colVec = Q.col(col); | |
|       for (int prevCol = 0; prevCol < col; ++prevCol) | |
|       { | |
|         typename MatrixType::ColXpr prevColVec = Q.col(prevCol); | |
|         colVec -= colVec.dot(prevColVec)*prevColVec; | |
|       } | |
|       Q.col(col) = colVec.normalized(); | |
|     } | |
| 
 | |
|     // this additional orthogonalization is not necessary in theory but should enhance | |
|     // the numerical orthogonality of the matrix | |
|     for (int row = 0; row < size; ++row) | |
|     { | |
|       typename MatrixType::RowXpr rowVec = Q.row(row); | |
|       for (int prevRow = 0; prevRow < row; ++prevRow) | |
|       { | |
|         typename MatrixType::RowXpr prevRowVec = Q.row(prevRow); | |
|         rowVec -= rowVec.dot(prevRowVec)*prevRowVec; | |
|       } | |
|       Q.row(row) = rowVec.normalized(); | |
|     } | |
| 
 | |
|     // final check | |
|     is_unitary = Q.isUnitary(); | |
|     --max_tries; | |
|   } | |
| 
 | |
|   if (max_tries == 0) | |
|     eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!"); | |
| 
 | |
|   return Q; | |
| } | |
| 
 | |
| //  Constructs a random matrix from the special unitary group SU(size). | |
| template <typename T> | |
| Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size) | |
| { | |
|   typedef T Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType; | |
| 
 | |
|   // initialize unitary matrix | |
|   MatrixType Q = randMatrixUnitary<Scalar>(size); | |
| 
 | |
|   // tweak the first column to make the determinant be 1 | |
|   Q.col(0) *= internal::conj(Q.determinant()); | |
| 
 | |
|   return Q; | |
| } | |
| 
 | |
| template <typename MatrixType> | |
| void run_test(int dim, int num_elements) | |
| { | |
|   typedef typename internal::traits<MatrixType>::Scalar Scalar; | |
|   typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX; | |
|   typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX; | |
| 
 | |
|   // MUST be positive because in any other case det(cR_t) may become negative for | |
|   // odd dimensions! | |
|   const Scalar c = internal::abs(internal::random<Scalar>()); | |
| 
 | |
|   MatrixX R = randMatrixSpecialUnitary<Scalar>(dim); | |
|   VectorX t = Scalar(50)*VectorX::Random(dim,1); | |
| 
 | |
|   MatrixX cR_t = MatrixX::Identity(dim+1,dim+1); | |
|   cR_t.block(0,0,dim,dim) = c*R; | |
|   cR_t.block(0,dim,dim,1) = t; | |
| 
 | |
|   MatrixX src = MatrixX::Random(dim+1, num_elements); | |
|   src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1)); | |
| 
 | |
|   MatrixX dst = cR_t*src; | |
| 
 | |
|   MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements)); | |
| 
 | |
|   const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm(); | |
|   VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon()); | |
| } | |
| 
 | |
| template<typename Scalar, int Dimension> | |
| void run_fixed_size_test(int num_elements) | |
| { | |
|   typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX; | |
|   typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix; | |
|   typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix; | |
|   typedef Matrix<Scalar, Dimension, 1> FixedVector; | |
| 
 | |
|   const int dim = Dimension; | |
| 
 | |
|   // MUST be positive because in any other case det(cR_t) may become negative for | |
|   // odd dimensions! | |
|   const Scalar c = internal::abs(internal::random<Scalar>()); | |
| 
 | |
|   FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim); | |
|   FixedVector t = Scalar(50)*FixedVector::Random(dim,1); | |
| 
 | |
|   HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1); | |
|   cR_t.block(0,0,dim,dim) = c*R; | |
|   cR_t.block(0,dim,dim,1) = t; | |
| 
 | |
|   MatrixX src = MatrixX::Random(dim+1, num_elements); | |
|   src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1)); | |
| 
 | |
|   MatrixX dst = cR_t*src; | |
| 
 | |
|   Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements); | |
|   Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements); | |
| 
 | |
|   HomMatrix cR_t_umeyama = umeyama(src_block, dst_block); | |
| 
 | |
|   const Scalar error = ( cR_t_umeyama*src - dst ).array().square().sum(); | |
| 
 | |
|   VERIFY(error < Scalar(10)*std::numeric_limits<Scalar>::epsilon()); | |
| } | |
| 
 | |
| void test_umeyama() | |
| { | |
|   for (int i=0; i<g_repeat; ++i) | |
|   { | |
|     const int num_elements = internal::random<int>(40,500); | |
| 
 | |
|     // works also for dimensions bigger than 3... | |
|     for (int dim=2; dim<8; ++dim) | |
|     { | |
|       CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements)); | |
|       CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements)); | |
|     } | |
| 
 | |
|     CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements))); | |
|     CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements))); | |
|     CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements))); | |
| 
 | |
|     CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements))); | |
|     CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements))); | |
|     CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements))); | |
|   } | |
| 
 | |
|   // Those two calls don't compile and result in meaningful error messages! | |
|   // umeyama(MatrixXcf(),MatrixXcf()); | |
|   // umeyama(MatrixXcd(),MatrixXcd()); | |
| }
 |