You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							110 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							110 lines
						
					
					
						
							4.3 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								template<typename T> bool isNotNaN(const T& x)
							 | 
						|
								{
							 | 
						|
								  return x==x;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// workaround aggressive optimization in ICC
							 | 
						|
								template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
							 | 
						|
								
							 | 
						|
								template<typename T> bool isFinite(const T& x)
							 | 
						|
								{
							 | 
						|
								  return isNotNaN(sub(x,x));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
							 | 
						|
								{
							 | 
						|
								  return x;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void stable_norm(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  /* this test covers the following files:
							 | 
						|
								     StableNorm.h
							 | 
						|
								  */
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								
							 | 
						|
								  // Check the basic machine-dependent constants.
							 | 
						|
								  {
							 | 
						|
								    int ibeta, it, iemin, iemax;
							 | 
						|
								
							 | 
						|
								    ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers
							 | 
						|
								    it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa
							 | 
						|
								    iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent
							 | 
						|
								    iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent
							 | 
						|
								
							 | 
						|
								    VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
							 | 
						|
								           && "the stable norm algorithm cannot be guaranteed on this computer");
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  Scalar big = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
							 | 
						|
								  Scalar small = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
							 | 
						|
								
							 | 
						|
								  MatrixType  vzero = MatrixType::Zero(rows, cols),
							 | 
						|
								              vrand = MatrixType::Random(rows, cols),
							 | 
						|
								              vbig(rows, cols),
							 | 
						|
								              vsmall(rows,cols);
							 | 
						|
								
							 | 
						|
								  vbig.fill(big);
							 | 
						|
								  vsmall.fill(small);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
							 | 
						|
								  VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm());
							 | 
						|
								
							 | 
						|
								  RealScalar size = static_cast<RealScalar>(m.size());
							 | 
						|
								
							 | 
						|
								  // test isFinite
							 | 
						|
								  VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity()));
							 | 
						|
								  VERIFY(!isFinite(internal::sqrt(-internal::abs(big))));
							 | 
						|
								
							 | 
						|
								  // test overflow
							 | 
						|
								  VERIFY(isFinite(internal::sqrt(size)*internal::abs(big)));
							 | 
						|
								  VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())),   internal::abs(internal::sqrt(size)*big)); // here the default norm must fail
							 | 
						|
								  VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big));
							 | 
						|
								  VERIFY_IS_APPROX(vbig.blueNorm(),   internal::sqrt(size)*internal::abs(big));
							 | 
						|
								  VERIFY_IS_APPROX(vbig.hypotNorm(),  internal::sqrt(size)*internal::abs(big));
							 | 
						|
								
							 | 
						|
								  // test underflow
							 | 
						|
								  VERIFY(isFinite(internal::sqrt(size)*internal::abs(small)));
							 | 
						|
								  VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())),   internal::abs(internal::sqrt(size)*small)); // here the default norm must fail
							 | 
						|
								  VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small));
							 | 
						|
								  VERIFY_IS_APPROX(vsmall.blueNorm(),   internal::sqrt(size)*internal::abs(small));
							 | 
						|
								  VERIFY_IS_APPROX(vsmall.hypotNorm(),  internal::sqrt(size)*internal::abs(small));
							 | 
						|
								
							 | 
						|
								// Test compilation of cwise() version
							 | 
						|
								  VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm());
							 | 
						|
								  VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_stable_norm()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( stable_norm(Vector4d()) );
							 | 
						|
								    CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
							 | 
						|
								    CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
							 | 
						|
								    CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
							 | 
						|
								  }
							 | 
						|
								}
							 |