You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							309 lines
						
					
					
						
							9.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							309 lines
						
					
					
						
							9.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								#include <Eigen/SparseCore>
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
							 | 
						|
								void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								
							 | 
						|
								  DenseRhs refX = dA.lu().solve(db);
							 | 
						|
								
							 | 
						|
								  Rhs x(b.rows(), b.cols());
							 | 
						|
								  Rhs oldb = b;
							 | 
						|
								
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
							 | 
						|
								    exit(0);
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: solving failed\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								
							 | 
						|
								  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								  
							 | 
						|
								  x.setZero();
							 | 
						|
								  // test the analyze/factorize API
							 | 
						|
								  solver.analyzePattern(A);
							 | 
						|
								  solver.factorize(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
							 | 
						|
								    exit(0);
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: solving failed\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								
							 | 
						|
								  VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								  
							 | 
						|
								  // test Block as the result and rhs:
							 | 
						|
								  {
							 | 
						|
								    DenseRhs x(db.rows(), db.cols());
							 | 
						|
								    DenseRhs b(db), oldb(db);
							 | 
						|
								    x.setZero();
							 | 
						|
								    x.block(0,0,x.rows(),x.cols()) = solver.solve(b.block(0,0,b.rows(),b.cols()));
							 | 
						|
								    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
							 | 
						|
								    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename Rhs>
							 | 
						|
								void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef typename Mat::RealScalar RealScalar;
							 | 
						|
								  
							 | 
						|
								  Rhs x(b.rows(), b.cols());
							 | 
						|
								  
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
							 | 
						|
								    exit(0);
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: solving failed\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  RealScalar res_error;
							 | 
						|
								  // Compute the norm of the relative error
							 | 
						|
								  if(refX.size() != 0)
							 | 
						|
								    res_error = (refX - x).norm()/refX.norm();
							 | 
						|
								  else
							 | 
						|
								  { 
							 | 
						|
								    // Compute the relative residual norm
							 | 
						|
								    res_error = (b - A * x).norm()/b.norm();
							 | 
						|
								  }
							 | 
						|
								  if (res_error > test_precision<Scalar>() ){
							 | 
						|
								    std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) 
							 | 
						|
								    << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
							 | 
						|
								    abort();
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								}
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef typename Mat::RealScalar RealScalar;
							 | 
						|
								  
							 | 
						|
								  solver.compute(A);
							 | 
						|
								  if (solver.info() != Success)
							 | 
						|
								  {
							 | 
						|
								    std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
							 | 
						|
								    return;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  Scalar refDet = dA.determinant();
							 | 
						|
								  VERIFY_IS_APPROX(refDet,solver.determinant());
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  int size = internal::random<int>(1,maxSize);
							 | 
						|
								  double density = (std::max)(8./(size*size), 0.01);
							 | 
						|
								
							 | 
						|
								  Mat M(size, size);
							 | 
						|
								  DenseMatrix dM(size, size);
							 | 
						|
								
							 | 
						|
								  initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
							 | 
						|
								
							 | 
						|
								  A = M * M.adjoint();
							 | 
						|
								  dA = dM * dM.adjoint();
							 | 
						|
								  
							 | 
						|
								  halfA.resize(size,size);
							 | 
						|
								  halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
							 | 
						|
								  
							 | 
						|
								  return size;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								#ifdef TEST_REAL_CASES
							 | 
						|
								template<typename Scalar>
							 | 
						|
								inline std::string get_matrixfolder()
							 | 
						|
								{
							 | 
						|
								  std::string mat_folder = TEST_REAL_CASES; 
							 | 
						|
								  if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
							 | 
						|
								    mat_folder  = mat_folder + static_cast<string>("/complex/");
							 | 
						|
								  else
							 | 
						|
								    mat_folder = mat_folder + static_cast<string>("/real/");
							 | 
						|
								  return mat_folder;
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_spd_solving(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef typename Mat::Index Index; 
							 | 
						|
								  typedef SparseMatrix<Scalar,ColMajor> SpMat;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								
							 | 
						|
								  // generate the problem
							 | 
						|
								  Mat A, halfA;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  int size = generate_sparse_spd_problem(solver, A, halfA, dA);
							 | 
						|
								
							 | 
						|
								  // generate the right hand sides
							 | 
						|
								  int rhsCols = internal::random<int>(1,16);
							 | 
						|
								  double density = (std::max)(8./(size*rhsCols), 0.1);
							 | 
						|
								  SpMat B(size,rhsCols);
							 | 
						|
								  DenseVector b = DenseVector::Random(size);
							 | 
						|
								  DenseMatrix dB(size,rhsCols);
							 | 
						|
								  initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
							 | 
						|
								  
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    check_sparse_solving(solver, A,     b,  dA, b);
							 | 
						|
								    check_sparse_solving(solver, halfA, b,  dA, b);
							 | 
						|
								    check_sparse_solving(solver, A,     dB, dA, dB);
							 | 
						|
								    check_sparse_solving(solver, halfA, dB, dA, dB);
							 | 
						|
								    check_sparse_solving(solver, A,     B,  dA, dB);
							 | 
						|
								    check_sparse_solving(solver, halfA, B,  dA, dB);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // First, get the folder 
							 | 
						|
								#ifdef TEST_REAL_CASES  
							 | 
						|
								  if (internal::is_same<Scalar, float>::value 
							 | 
						|
								      || internal::is_same<Scalar, std::complex<float> >::value)
							 | 
						|
								    return ;
							 | 
						|
								  
							 | 
						|
								  std::string mat_folder = get_matrixfolder<Scalar>();
							 | 
						|
								  MatrixMarketIterator<Scalar> it(mat_folder);
							 | 
						|
								  for (; it; ++it)
							 | 
						|
								  {
							 | 
						|
								    if (it.sym() == SPD){
							 | 
						|
								      Mat halfA;
							 | 
						|
								      PermutationMatrix<Dynamic, Dynamic, Index> pnull;
							 | 
						|
								      halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
							 | 
						|
								      
							 | 
						|
								      std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
							 | 
						|
								      check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
							 | 
						|
								      check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  // generate the problem
							 | 
						|
								  Mat A, halfA;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  generate_sparse_spd_problem(solver, A, halfA, dA, 30);
							 | 
						|
								  
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    check_sparse_determinant(solver, A,     dA);
							 | 
						|
								    check_sparse_determinant(solver, halfA, dA );
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver, typename DenseMat>
							 | 
						|
								int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  int size = internal::random<int>(1,maxSize);
							 | 
						|
								  double density = (std::max)(8./(size*size), 0.01);
							 | 
						|
								  
							 | 
						|
								  A.resize(size,size);
							 | 
						|
								  dA.resize(size,size);
							 | 
						|
								
							 | 
						|
								  initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
							 | 
						|
								  
							 | 
						|
								  return size;
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_square_solving(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								
							 | 
						|
								  int rhsCols = internal::random<int>(1,16);
							 | 
						|
								
							 | 
						|
								  Mat A;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  int size = generate_sparse_square_problem(solver, A, dA);
							 | 
						|
								
							 | 
						|
								  DenseVector b = DenseVector::Random(size);
							 | 
						|
								  DenseMatrix dB = DenseMatrix::Random(size,rhsCols);
							 | 
						|
								  A.makeCompressed();
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    check_sparse_solving(solver, A, b,  dA, b);
							 | 
						|
								    check_sparse_solving(solver, A, dB, dA, dB);
							 | 
						|
								  }
							 | 
						|
								   
							 | 
						|
								  // First, get the folder 
							 | 
						|
								#ifdef TEST_REAL_CASES
							 | 
						|
								  if (internal::is_same<Scalar, float>::value 
							 | 
						|
								      || internal::is_same<Scalar, std::complex<float> >::value)
							 | 
						|
								    return ;
							 | 
						|
								  
							 | 
						|
								  std::string mat_folder = get_matrixfolder<Scalar>();
							 | 
						|
								  MatrixMarketIterator<Scalar> it(mat_folder);
							 | 
						|
								  for (; it; ++it)
							 | 
						|
								  {
							 | 
						|
								    std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
							 | 
						|
								    check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
							 | 
						|
								  }
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Solver> void check_sparse_square_determinant(Solver& solver)
							 | 
						|
								{
							 | 
						|
								  typedef typename Solver::MatrixType Mat;
							 | 
						|
								  typedef typename Mat::Scalar Scalar;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								
							 | 
						|
								  // generate the problem
							 | 
						|
								  Mat A;
							 | 
						|
								  DenseMatrix dA;
							 | 
						|
								  generate_sparse_square_problem(solver, A, dA, 30);
							 | 
						|
								  A.makeCompressed();
							 | 
						|
								  for (int i = 0; i < g_repeat; i++) {
							 | 
						|
								    check_sparse_determinant(solver, A, dA);
							 | 
						|
								  }
							 | 
						|
								}
							 |