You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							350 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							350 lines
						
					
					
						
							12 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
							 | 
						|
								// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								// discard stack allocation as that too bypasses malloc
							 | 
						|
								#define EIGEN_STACK_ALLOCATION_LIMIT 0
							 | 
						|
								#define EIGEN_RUNTIME_NO_MALLOC
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <Eigen/SVD>
							 | 
						|
								
							 | 
						|
								template<typename MatrixType, int QRPreconditioner>
							 | 
						|
								void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  enum {
							 | 
						|
								    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
							 | 
						|
								    ColsAtCompileTime = MatrixType::ColsAtCompileTime
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
							 | 
						|
								  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
							 | 
						|
								  typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
							 | 
						|
								  typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
							 | 
						|
								
							 | 
						|
								  MatrixType sigma = MatrixType::Zero(rows,cols);
							 | 
						|
								  sigma.diagonal() = svd.singularValues().template cast<Scalar>();
							 | 
						|
								  MatrixUType u = svd.matrixU();
							 | 
						|
								  MatrixVType v = svd.matrixV();
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
							 | 
						|
								  VERIFY_IS_UNITARY(u);
							 | 
						|
								  VERIFY_IS_UNITARY(v);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType, int QRPreconditioner>
							 | 
						|
								void jacobisvd_compare_to_full(const MatrixType& m,
							 | 
						|
								                               unsigned int computationOptions,
							 | 
						|
								                               const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								  Index diagSize = (std::min)(rows, cols);
							 | 
						|
								
							 | 
						|
								  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
							 | 
						|
								  if(computationOptions & ComputeFullU)
							 | 
						|
								    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
							 | 
						|
								  if(computationOptions & ComputeThinU)
							 | 
						|
								    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
							 | 
						|
								  if(computationOptions & ComputeFullV)
							 | 
						|
								    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
							 | 
						|
								  if(computationOptions & ComputeThinV)
							 | 
						|
								    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType, int QRPreconditioner>
							 | 
						|
								void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  enum {
							 | 
						|
								    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
							 | 
						|
								    ColsAtCompileTime = MatrixType::ColsAtCompileTime
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								  typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
							 | 
						|
								  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
							 | 
						|
								
							 | 
						|
								  RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
							 | 
						|
								  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
							 | 
						|
								  SolutionType x = svd.solve(rhs);
							 | 
						|
								  // evaluate normal equation which works also for least-squares solutions
							 | 
						|
								  VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType, int QRPreconditioner>
							 | 
						|
								void jacobisvd_test_all_computation_options(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
							 | 
						|
								    return;
							 | 
						|
								  JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
							 | 
						|
								
							 | 
						|
								  jacobisvd_check_full(m, fullSvd);
							 | 
						|
								  jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
							 | 
						|
								
							 | 
						|
								  if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
							 | 
						|
								    return;
							 | 
						|
								
							 | 
						|
								  jacobisvd_compare_to_full(m, ComputeFullU, fullSvd);
							 | 
						|
								  jacobisvd_compare_to_full(m, ComputeFullV, fullSvd);
							 | 
						|
								  jacobisvd_compare_to_full(m, 0, fullSvd);
							 | 
						|
								
							 | 
						|
								  if (MatrixType::ColsAtCompileTime == Dynamic) {
							 | 
						|
								    // thin U/V are only available with dynamic number of columns
							 | 
						|
								    jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd);
							 | 
						|
								    jacobisvd_compare_to_full(m,              ComputeThinV, fullSvd);
							 | 
						|
								    jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd);
							 | 
						|
								    jacobisvd_compare_to_full(m, ComputeThinU             , fullSvd);
							 | 
						|
								    jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd);
							 | 
						|
								    jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV);
							 | 
						|
								    jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV);
							 | 
						|
								    jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
							 | 
						|
								
							 | 
						|
								    // test reconstruction
							 | 
						|
								    typedef typename MatrixType::Index Index;
							 | 
						|
								    Index diagSize = (std::min)(m.rows(), m.cols());
							 | 
						|
								    JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
							 | 
						|
								    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
							 | 
						|
								{
							 | 
						|
								  MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
							 | 
						|
								
							 | 
						|
								  jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m);
							 | 
						|
								  jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m);
							 | 
						|
								  jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m);
							 | 
						|
								  jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename MatrixType::Index Index;
							 | 
						|
								  Index rows = m.rows();
							 | 
						|
								  Index cols = m.cols();
							 | 
						|
								
							 | 
						|
								  enum {
							 | 
						|
								    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
							 | 
						|
								    ColsAtCompileTime = MatrixType::ColsAtCompileTime
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
							 | 
						|
								
							 | 
						|
								  RhsType rhs(rows);
							 | 
						|
								
							 | 
						|
								  JacobiSVD<MatrixType> svd;
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.matrixU())
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.singularValues())
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.matrixV())
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.solve(rhs))
							 | 
						|
								
							 | 
						|
								  MatrixType a = MatrixType::Zero(rows, cols);
							 | 
						|
								  a.setZero();
							 | 
						|
								  svd.compute(a, 0);
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.matrixU())
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.matrixV())
							 | 
						|
								  svd.singularValues();
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd.solve(rhs))
							 | 
						|
								
							 | 
						|
								  if (ColsAtCompileTime == Dynamic)
							 | 
						|
								  {
							 | 
						|
								    svd.compute(a, ComputeThinU);
							 | 
						|
								    svd.matrixU();
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd.matrixV())
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd.solve(rhs))
							 | 
						|
								
							 | 
						|
								    svd.compute(a, ComputeThinV);
							 | 
						|
								    svd.matrixV();
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd.matrixU())
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd.solve(rhs))
							 | 
						|
								
							 | 
						|
								    JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
							 | 
						|
								  }
							 | 
						|
								  else
							 | 
						|
								  {
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
							 | 
						|
								    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void jacobisvd_method()
							 | 
						|
								{
							 | 
						|
								  enum { Size = MatrixType::RowsAtCompileTime };
							 | 
						|
								  typedef typename MatrixType::RealScalar RealScalar;
							 | 
						|
								  typedef Matrix<RealScalar, Size, 1> RealVecType;
							 | 
						|
								  MatrixType m = MatrixType::Identity();
							 | 
						|
								  VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
							 | 
						|
								  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
							 | 
						|
								  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
							 | 
						|
								  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// work around stupid msvc error when constructing at compile time an expression that involves
							 | 
						|
								// a division by zero, even if the numeric type has floating point
							 | 
						|
								template<typename Scalar>
							 | 
						|
								EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
							 | 
						|
								
							 | 
						|
								// workaround aggressive optimization in ICC
							 | 
						|
								template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }
							 | 
						|
								
							 | 
						|
								template<typename MatrixType>
							 | 
						|
								void jacobisvd_inf_nan()
							 | 
						|
								{
							 | 
						|
								  // all this function does is verify we don't iterate infinitely on nan/inf values
							 | 
						|
								
							 | 
						|
								  JacobiSVD<MatrixType> svd;
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  Scalar some_inf = Scalar(1) / zero<Scalar>();
							 | 
						|
								  VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
							 | 
						|
								  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
							 | 
						|
								
							 | 
						|
								  Scalar some_nan = zero<Scalar>() / zero<Scalar>();
							 | 
						|
								  VERIFY(some_nan != some_nan);
							 | 
						|
								  svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
							 | 
						|
								
							 | 
						|
								  MatrixType m = MatrixType::Zero(10,10);
							 | 
						|
								  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
							 | 
						|
								  svd.compute(m, ComputeFullU | ComputeFullV);
							 | 
						|
								
							 | 
						|
								  m = MatrixType::Zero(10,10);
							 | 
						|
								  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan;
							 | 
						|
								  svd.compute(m, ComputeFullU | ComputeFullV);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								// Regression test for bug 286: JacobiSVD loops indefinitely with some
							 | 
						|
								// matrices containing denormal numbers.
							 | 
						|
								void jacobisvd_bug286()
							 | 
						|
								{
							 | 
						|
								#if defined __INTEL_COMPILER
							 | 
						|
								// shut up warning #239: floating point underflow
							 | 
						|
								#pragma warning push
							 | 
						|
								#pragma warning disable 239
							 | 
						|
								#endif
							 | 
						|
								  Matrix2d M;
							 | 
						|
								  M << -7.90884e-313, -4.94e-324,
							 | 
						|
								                 0, 5.60844e-313;
							 | 
						|
								#if defined __INTEL_COMPILER
							 | 
						|
								#pragma warning pop
							 | 
						|
								#endif
							 | 
						|
								  JacobiSVD<Matrix2d> svd;
							 | 
						|
								  svd.compute(M); // just check we don't loop indefinitely
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void jacobisvd_preallocate()
							 | 
						|
								{
							 | 
						|
								  Vector3f v(3.f, 2.f, 1.f);
							 | 
						|
								  MatrixXf m = v.asDiagonal();
							 | 
						|
								
							 | 
						|
								  internal::set_is_malloc_allowed(false);
							 | 
						|
								  VERIFY_RAISES_ASSERT(VectorXf v(10);)
							 | 
						|
								  JacobiSVD<MatrixXf> svd;
							 | 
						|
								  internal::set_is_malloc_allowed(true);
							 | 
						|
								  svd.compute(m);
							 | 
						|
								  VERIFY_IS_APPROX(svd.singularValues(), v);
							 | 
						|
								
							 | 
						|
								  JacobiSVD<MatrixXf> svd2(3,3);
							 | 
						|
								  internal::set_is_malloc_allowed(false);
							 | 
						|
								  svd2.compute(m);
							 | 
						|
								  internal::set_is_malloc_allowed(true);
							 | 
						|
								  VERIFY_IS_APPROX(svd2.singularValues(), v);
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd2.matrixU());
							 | 
						|
								  VERIFY_RAISES_ASSERT(svd2.matrixV());
							 | 
						|
								  svd2.compute(m, ComputeFullU | ComputeFullV);
							 | 
						|
								  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
							 | 
						|
								  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
							 | 
						|
								  internal::set_is_malloc_allowed(false);
							 | 
						|
								  svd2.compute(m);
							 | 
						|
								  internal::set_is_malloc_allowed(true);
							 | 
						|
								
							 | 
						|
								  JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
							 | 
						|
								  internal::set_is_malloc_allowed(false);
							 | 
						|
								  svd2.compute(m);
							 | 
						|
								  internal::set_is_malloc_allowed(true);
							 | 
						|
								  VERIFY_IS_APPROX(svd2.singularValues(), v);
							 | 
						|
								  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
							 | 
						|
								  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
							 | 
						|
								  internal::set_is_malloc_allowed(false);
							 | 
						|
								  svd2.compute(m, ComputeFullU|ComputeFullV);
							 | 
						|
								  internal::set_is_malloc_allowed(true);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_jacobisvd()
							 | 
						|
								{
							 | 
						|
								  CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
							 | 
						|
								  CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
							 | 
						|
								  CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
							 | 
						|
								  CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
							 | 
						|
								
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    Matrix2cd m;
							 | 
						|
								    m << 0, 1,
							 | 
						|
								         0, 1;
							 | 
						|
								    CALL_SUBTEST_1(( jacobisvd(m, false) ));
							 | 
						|
								    m << 1, 0,
							 | 
						|
								         1, 0;
							 | 
						|
								    CALL_SUBTEST_1(( jacobisvd(m, false) ));
							 | 
						|
								
							 | 
						|
								    Matrix2d n;
							 | 
						|
								    n << 0, 0,
							 | 
						|
								         0, 0;
							 | 
						|
								    CALL_SUBTEST_2(( jacobisvd(n, false) ));
							 | 
						|
								    n << 0, 0,
							 | 
						|
								         0, 1;
							 | 
						|
								    CALL_SUBTEST_2(( jacobisvd(n, false) ));
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
							 | 
						|
								    CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
							 | 
						|
								    CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
							 | 
						|
								    CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
							 | 
						|
								
							 | 
						|
								    int r = internal::random<int>(1, 30),
							 | 
						|
								        c = internal::random<int>(1, 30);
							 | 
						|
								    CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
							 | 
						|
								    CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
							 | 
						|
								    (void) r;
							 | 
						|
								    (void) c;
							 | 
						|
								
							 | 
						|
								    // Test on inf/nan matrix
							 | 
						|
								    CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
							 | 
						|
								  CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
							 | 
						|
								
							 | 
						|
								  // test matrixbase method
							 | 
						|
								  CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
							 | 
						|
								  CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
							 | 
						|
								
							 | 
						|
								  // Test problem size constructors
							 | 
						|
								  CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
							 | 
						|
								
							 | 
						|
								  // Check that preallocation avoids subsequent mallocs
							 | 
						|
								  CALL_SUBTEST_9( jacobisvd_preallocate() );
							 | 
						|
								
							 | 
						|
								  // Regression check for bug 286
							 | 
						|
								  CALL_SUBTEST_2( jacobisvd_bug286() );
							 | 
						|
								}
							 |