You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							130 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							130 lines
						
					
					
						
							4.3 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| template<typename MatrixType> | |
| bool equalsIdentity(const MatrixType& A) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   Scalar zero = static_cast<Scalar>(0); | |
| 
 | |
|   bool offDiagOK = true; | |
|   for (Index i = 0; i < A.rows(); ++i) { | |
|     for (Index j = i+1; j < A.cols(); ++j) { | |
|       offDiagOK = offDiagOK && (A(i,j) == zero); | |
|     } | |
|   } | |
|   for (Index i = 0; i < A.rows(); ++i) { | |
|     for (Index j = 0; j < (std::min)(i, A.cols()); ++j) { | |
|       offDiagOK = offDiagOK && (A(i,j) == zero); | |
|     } | |
|   } | |
| 
 | |
|   bool diagOK = (A.diagonal().array() == 1).all(); | |
|   return offDiagOK && diagOK; | |
| } | |
| 
 | |
| template<typename VectorType> | |
| void testVectorType(const VectorType& base) | |
| { | |
|   typedef typename VectorType::Scalar Scalar; | |
| 
 | |
|   const Index size = base.size(); | |
|    | |
|   Scalar high = internal::random<Scalar>(-500,500); | |
|   Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500)); | |
|   if (low>high) std::swap(low,high); | |
| 
 | |
|   const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1)); | |
| 
 | |
|   // check whether the result yields what we expect it to do | |
|   VectorType m(base); | |
|   m.setLinSpaced(size,low,high); | |
| 
 | |
|   VectorType n(size); | |
|   for (int i=0; i<size; ++i) | |
|     n(i) = low+i*step; | |
| 
 | |
|   VERIFY_IS_APPROX(m,n); | |
| 
 | |
|   // random access version | |
|   m = VectorType::LinSpaced(size,low,high); | |
|   VERIFY_IS_APPROX(m,n); | |
| 
 | |
|   // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). | |
|   VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<Scalar>::epsilon() ); | |
| 
 | |
|   // These guys sometimes fail! This is not good. Any ideas how to fix them!? | |
|   //VERIFY( m(m.size()-1) == high ); | |
|   //VERIFY( m(0) == low ); | |
|  | |
|   // sequential access version | |
|   m = VectorType::LinSpaced(Sequential,size,low,high); | |
|   VERIFY_IS_APPROX(m,n); | |
| 
 | |
|   // These guys sometimes fail! This is not good. Any ideas how to fix them!? | |
|   //VERIFY( m(m.size()-1) == high ); | |
|   //VERIFY( m(0) == low ); | |
|  | |
|   // check whether everything works with row and col major vectors | |
|   Matrix<Scalar,Dynamic,1> row_vector(size); | |
|   Matrix<Scalar,1,Dynamic> col_vector(size); | |
|   row_vector.setLinSpaced(size,low,high); | |
|   col_vector.setLinSpaced(size,low,high); | |
|   // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit | |
|   // when computing the squared sum in isApprox, thus the 2x factor. | |
|   VERIFY( row_vector.isApprox(col_vector.transpose(), Scalar(2)*NumTraits<Scalar>::epsilon())); | |
| 
 | |
|   Matrix<Scalar,Dynamic,1> size_changer(size+50); | |
|   size_changer.setLinSpaced(size,low,high); | |
|   VERIFY( size_changer.size() == size ); | |
| 
 | |
|   typedef Matrix<Scalar,1,1> ScalarMatrix; | |
|   ScalarMatrix scalar; | |
|   scalar.setLinSpaced(1,low,high); | |
|   VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) ); | |
|   VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) ); | |
| 
 | |
|   // regression test for bug 526 (linear vectorized transversal) | |
|   if (size > 1) { | |
|     m.tail(size-1).setLinSpaced(low, high); | |
|     VERIFY_IS_APPROX(m(size-1), high); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> | |
| void testMatrixType(const MatrixType& m) | |
| { | |
|   const Index rows = m.rows(); | |
|   const Index cols = m.cols(); | |
| 
 | |
|   MatrixType A; | |
|   A.setIdentity(rows, cols); | |
|   VERIFY(equalsIdentity(A)); | |
|   VERIFY(equalsIdentity(MatrixType::Identity(rows, cols))); | |
| } | |
| 
 | |
| void test_nullary() | |
| { | |
|   CALL_SUBTEST_1( testMatrixType(Matrix2d()) ); | |
|   CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) ); | |
|   CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) ); | |
|    | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,300))) ); | |
|     CALL_SUBTEST_5( testVectorType(Vector4d()) );  // regression test for bug 232 | |
|     CALL_SUBTEST_6( testVectorType(Vector3d()) ); | |
|     CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,300))) ); | |
|     CALL_SUBTEST_8( testVectorType(Vector3f()) ); | |
|     CALL_SUBTEST_8( testVectorType(Vector4f()) ); | |
|     CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) ); | |
|     CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) ); | |
|   } | |
| }
 |