You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							168 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							168 lines
						
					
					
						
							5.8 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
| #include <limits> | |
| #include <Eigen/Eigenvalues> | |
| #include <Eigen/LU> | |
|  | |
| template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0) | |
| { | |
|   bool match = diffs.diagonal().sum() <= tol; | |
|   if(match || col==diffs.cols()) | |
|   { | |
|     return match; | |
|   } | |
|   else | |
|   { | |
|     Index n = diffs.cols(); | |
|     std::vector<std::pair<Index,Index> > transpositions; | |
|     for(Index i=col; i<n; ++i) | |
|     { | |
|       Index best_index(0); | |
|       if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol) | |
|         break; | |
|        | |
|       best_index += col; | |
|        | |
|       diffs.row(col).swap(diffs.row(best_index)); | |
|       if(find_pivot(tol,diffs,col+1)) return true; | |
|       diffs.row(col).swap(diffs.row(best_index)); | |
|        | |
|       // move current pivot to the end | |
|       diffs.row(n-(i-col)-1).swap(diffs.row(best_index)); | |
|       transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index)); | |
|     } | |
|     // restore | |
|     for(Index k=transpositions.size()-1; k>=0; --k) | |
|       diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); | |
|   } | |
|   return false; | |
| } | |
| 
 | |
| /* Check that two column vectors are approximately equal upto permutations. | |
|  * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(), | |
|  * however this strategy is numerically inacurate because of numerical cancellation issues. | |
|  */ | |
| template<typename VectorType> | |
| void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) | |
| { | |
|   typedef typename VectorType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   VERIFY(vec1.cols() == 1); | |
|   VERIFY(vec2.cols() == 1); | |
|   VERIFY(vec1.rows() == vec2.rows()); | |
|    | |
|   Index n = vec1.rows(); | |
|   RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm()); | |
|   Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); | |
|    | |
|   VERIFY( find_pivot(tol, diffs) ); | |
| } | |
| 
 | |
| 
 | |
| template<typename MatrixType> void eigensolver(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   /* this test covers the following files: | |
|      ComplexEigenSolver.h, and indirectly ComplexSchur.h | |
|   */ | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows,cols); | |
|   MatrixType symmA =  a.adjoint() * a; | |
| 
 | |
|   ComplexEigenSolver<MatrixType> ei0(symmA); | |
|   VERIFY_IS_EQUAL(ei0.info(), Success); | |
|   VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); | |
| 
 | |
|   ComplexEigenSolver<MatrixType> ei1(a); | |
|   VERIFY_IS_EQUAL(ei1.info(), Success); | |
|   VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | |
|   // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus | |
|   // another algorithm so results may differ slightly | |
|   verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); | |
| 
 | |
|   ComplexEigenSolver<MatrixType> ei2; | |
|   ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); | |
|   VERIFY_IS_EQUAL(ei2.info(), Success); | |
|   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); | |
|   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); | |
|   if (rows > 2) { | |
|     ei2.setMaxIterations(1).compute(a); | |
|     VERIFY_IS_EQUAL(ei2.info(), NoConvergence); | |
|     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); | |
|   } | |
| 
 | |
|   ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); | |
|   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | |
|   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | |
| 
 | |
|   // Regression test for issue #66 | |
|   MatrixType z = MatrixType::Zero(rows,cols); | |
|   ComplexEigenSolver<MatrixType> eiz(z); | |
|   VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); | |
| 
 | |
|   MatrixType id = MatrixType::Identity(rows, cols); | |
|   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | |
| 
 | |
|   if (rows > 1 && rows < 20) | |
|   { | |
|     // Test matrix with NaN | |
|     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | |
|     ComplexEigenSolver<MatrixType> eiNaN(a); | |
|     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); | |
|   } | |
| 
 | |
|   // regression test for bug 1098 | |
|   { | |
|     ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); | |
|     eig.compute(a.adjoint() * a); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) | |
| { | |
|   ComplexEigenSolver<MatrixType> eig; | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | |
|   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | |
| 
 | |
|   MatrixType a = MatrixType::Random(m.rows(),m.cols()); | |
|   eig.compute(a, false); | |
|   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | |
| } | |
| 
 | |
| void test_eigensolver_complex() | |
| { | |
|   int s = 0; | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); | |
|     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | |
|     CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); | |
|     CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); | |
|     CALL_SUBTEST_4( eigensolver(Matrix3f()) ); | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s) | |
|   } | |
|   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); | |
|   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | |
|   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); | |
|   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); | |
|   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); | |
|    | |
|   TEST_SET_BUT_UNUSED_VARIABLE(s) | |
| }
 |