You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							190 lines
						
					
					
						
							4.9 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							190 lines
						
					
					
						
							4.9 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include <iostream> | |
| #include <fstream> | |
| #include <iomanip> | |
|  | |
| #include "main.h" | |
| #include <Eigen/LevenbergMarquardt> | |
| using namespace std; | |
| using namespace StormEigen; | |
| 
 | |
| template<typename Scalar> | |
| struct DenseLM : DenseFunctor<Scalar> | |
| { | |
|   typedef DenseFunctor<Scalar> Base; | |
|   typedef typename Base::JacobianType JacobianType; | |
|   typedef Matrix<Scalar,Dynamic,1> VectorType; | |
|    | |
|   DenseLM(int n, int m) : DenseFunctor<Scalar>(n,m)  | |
|   { } | |
|   | |
|   VectorType model(const VectorType& uv, VectorType& x) | |
|   { | |
|     VectorType y; // Should change to use expression template | |
|     int m = Base::values();  | |
|     int n = Base::inputs(); | |
|     eigen_assert(uv.size()%2 == 0); | |
|     eigen_assert(uv.size() == n); | |
|     eigen_assert(x.size() == m); | |
|     y.setZero(m); | |
|     int half = n/2; | |
|     VectorBlock<const VectorType> u(uv, 0, half); | |
|     VectorBlock<const VectorType> v(uv, half, half); | |
|     for (int j = 0; j < m; j++) | |
|     { | |
|       for (int i = 0; i < half; i++) | |
|         y(j) += u(i)*std::exp(-(x(j)-i)*(x(j)-i)/(v(i)*v(i))); | |
|     } | |
|     return y; | |
|      | |
|   } | |
|   void initPoints(VectorType& uv_ref, VectorType& x) | |
|   { | |
|     m_x = x; | |
|     m_y = this->model(uv_ref, x); | |
|   } | |
|    | |
|   int operator()(const VectorType& uv, VectorType& fvec) | |
|   { | |
|      | |
|     int m = Base::values();  | |
|     int n = Base::inputs(); | |
|     eigen_assert(uv.size()%2 == 0); | |
|     eigen_assert(uv.size() == n); | |
|     eigen_assert(fvec.size() == m); | |
|     int half = n/2; | |
|     VectorBlock<const VectorType> u(uv, 0, half); | |
|     VectorBlock<const VectorType> v(uv, half, half); | |
|     for (int j = 0; j < m; j++) | |
|     { | |
|       fvec(j) = m_y(j); | |
|       for (int i = 0; i < half; i++) | |
|       { | |
|         fvec(j) -= u(i) *std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i))); | |
|       } | |
|     } | |
|      | |
|     return 0; | |
|   } | |
|   int df(const VectorType& uv, JacobianType& fjac) | |
|   { | |
|     int m = Base::values();  | |
|     int n = Base::inputs(); | |
|     eigen_assert(n == uv.size()); | |
|     eigen_assert(fjac.rows() == m); | |
|     eigen_assert(fjac.cols() == n); | |
|     int half = n/2; | |
|     VectorBlock<const VectorType> u(uv, 0, half); | |
|     VectorBlock<const VectorType> v(uv, half, half); | |
|     for (int j = 0; j < m; j++) | |
|     { | |
|       for (int i = 0; i < half; i++) | |
|       { | |
|         fjac.coeffRef(j,i) = -std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i))); | |
|         fjac.coeffRef(j,i+half) = -2.*u(i)*(m_x(j)-i)*(m_x(j)-i)/(std::pow(v(i),3)) * std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i))); | |
|       } | |
|     } | |
|     return 0; | |
|   } | |
|   VectorType m_x, m_y; //Data Points | |
| }; | |
| 
 | |
| template<typename FunctorType, typename VectorType> | |
| int test_minimizeLM(FunctorType& functor, VectorType& uv) | |
| { | |
|   LevenbergMarquardt<FunctorType> lm(functor); | |
|   LevenbergMarquardtSpace::Status info;  | |
|    | |
|   info = lm.minimize(uv); | |
|    | |
|   VERIFY_IS_EQUAL(info, 1); | |
|   //FIXME Check other parameters | |
|   return info; | |
| } | |
| 
 | |
| template<typename FunctorType, typename VectorType> | |
| int test_lmder(FunctorType& functor, VectorType& uv) | |
| { | |
|   typedef typename VectorType::Scalar Scalar; | |
|   LevenbergMarquardtSpace::Status info;  | |
|   LevenbergMarquardt<FunctorType> lm(functor); | |
|   info = lm.lmder1(uv); | |
|    | |
|   VERIFY_IS_EQUAL(info, 1); | |
|   //FIXME Check other parameters | |
|   return info; | |
| } | |
| 
 | |
| template<typename FunctorType, typename VectorType> | |
| int test_minimizeSteps(FunctorType& functor, VectorType& uv) | |
| { | |
|   LevenbergMarquardtSpace::Status info;    | |
|   LevenbergMarquardt<FunctorType> lm(functor); | |
|   info = lm.minimizeInit(uv); | |
|   if (info==LevenbergMarquardtSpace::ImproperInputParameters) | |
|       return info; | |
|   do  | |
|   { | |
|     info = lm.minimizeOneStep(uv); | |
|   } while (info==LevenbergMarquardtSpace::Running); | |
|    | |
|   VERIFY_IS_EQUAL(info, 1); | |
|   //FIXME Check other parameters | |
|   return info; | |
| } | |
| 
 | |
| template<typename T> | |
| void test_denseLM_T() | |
| { | |
|   typedef Matrix<T,Dynamic,1> VectorType; | |
|    | |
|   int inputs = 10;  | |
|   int values = 1000;  | |
|   DenseLM<T> dense_gaussian(inputs, values); | |
|   VectorType uv(inputs),uv_ref(inputs); | |
|   VectorType x(values); | |
|    | |
|   // Generate the reference solution  | |
|   uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3; | |
|    | |
|   //Generate the reference data points | |
|   x.setRandom(); | |
|   x = 10*x; | |
|   x.array() += 10; | |
|   dense_gaussian.initPoints(uv_ref, x); | |
|    | |
|   // Generate the initial parameters  | |
|   VectorBlock<VectorType> u(uv, 0, inputs/2);  | |
|   VectorBlock<VectorType> v(uv, inputs/2, inputs/2); | |
|    | |
|   // Solve the optimization problem | |
|    | |
|   //Solve in one go | |
|   u.setOnes(); v.setOnes(); | |
|   test_minimizeLM(dense_gaussian, uv); | |
|    | |
|   //Solve until the machine precision | |
|   u.setOnes(); v.setOnes(); | |
|   test_lmder(dense_gaussian, uv);  | |
|    | |
|   // Solve step by step | |
|   v.setOnes(); u.setOnes(); | |
|   test_minimizeSteps(dense_gaussian, uv); | |
|    | |
| } | |
| 
 | |
| void test_denseLM() | |
| { | |
|   CALL_SUBTEST_2(test_denseLM_T<double>()); | |
|    | |
|   // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); | |
| }
 |