You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							407 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							407 lines
						
					
					
						
							13 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #ifndef EIGEN_NO_ASSERTION_CHECKING | |
| #define EIGEN_NO_ASSERTION_CHECKING | |
| #endif | |
|  | |
| #define TEST_ENABLE_TEMPORARY_TRACKING | |
|  | |
| #include "main.h" | |
| #include <Eigen/Cholesky> | |
| #include <Eigen/QR> | |
|  | |
| template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm) | |
| { | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename MatrixType::RealScalar RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   MatrixType symmLo = symm.template triangularView<Lower>(); | |
|   MatrixType symmUp = symm.template triangularView<Upper>(); | |
|   MatrixType symmCpy = symm; | |
| 
 | |
|   CholType<MatrixType,Lower> chollo(symmLo); | |
|   CholType<MatrixType,Upper> cholup(symmUp); | |
| 
 | |
|   for (int k=0; k<10; ++k) | |
|   { | |
|     VectorType vec = VectorType::Random(symm.rows()); | |
|     RealScalar sigma = internal::random<RealScalar>(); | |
|     symmCpy += sigma * vec * vec.adjoint(); | |
| 
 | |
|     // we are doing some downdates, so it might be the case that the matrix is not SPD anymore | |
|     CholType<MatrixType,Lower> chol(symmCpy); | |
|     if(chol.info()!=Success) | |
|       break; | |
| 
 | |
|     chollo.rankUpdate(vec, sigma); | |
|     VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix()); | |
| 
 | |
|     cholup.rankUpdate(vec, sigma); | |
|     VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix()); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> void cholesky(const MatrixType& m) | |
| { | |
|   typedef typename MatrixType::Index Index; | |
|   /* this test covers the following files: | |
|      LLT.h LDLT.h | |
|   */ | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   MatrixType a0 = MatrixType::Random(rows,cols); | |
|   VectorType vecB = VectorType::Random(rows), vecX(rows); | |
|   MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); | |
|   SquareMatrixType symm =  a0 * a0.adjoint(); | |
|   // let's make sure the matrix is not singular or near singular | |
|   for (int k=0; k<3; ++k) | |
|   { | |
|     MatrixType a1 = MatrixType::Random(rows,cols); | |
|     symm += a1 * a1.adjoint(); | |
|   } | |
| 
 | |
|   { | |
|     SquareMatrixType symmUp = symm.template triangularView<Upper>(); | |
|     SquareMatrixType symmLo = symm.template triangularView<Lower>(); | |
|      | |
|     LLT<SquareMatrixType,Lower> chollo(symmLo); | |
|     VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); | |
|     vecX = chollo.solve(vecB); | |
|     VERIFY_IS_APPROX(symm * vecX, vecB); | |
|     matX = chollo.solve(matB); | |
|     VERIFY_IS_APPROX(symm * matX, matB); | |
| 
 | |
|     // test the upper mode | |
|     LLT<SquareMatrixType,Upper> cholup(symmUp); | |
|     VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); | |
|     vecX = cholup.solve(vecB); | |
|     VERIFY_IS_APPROX(symm * vecX, vecB); | |
|     matX = cholup.solve(matB); | |
|     VERIFY_IS_APPROX(symm * matX, matB); | |
| 
 | |
|     MatrixType neg = -symmLo; | |
|     chollo.compute(neg); | |
|     VERIFY(chollo.info()==NumericalIssue); | |
| 
 | |
|     VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU())); | |
|     VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL())); | |
|     VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU())); | |
|     VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL())); | |
|      | |
|     // test some special use cases of SelfCwiseBinaryOp: | |
|     MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols); | |
|     m2 = m1; | |
|     m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB); | |
|     VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); | |
|     m2 = m1; | |
|     m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB); | |
|     VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); | |
|     m2 = m1; | |
|     m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB); | |
|     VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); | |
|     m2 = m1; | |
|     m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB); | |
|     VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); | |
|   } | |
| 
 | |
|   // LDLT | |
|   { | |
|     int sign = internal::random<int>()%2 ? 1 : -1; | |
| 
 | |
|     if(sign == -1) | |
|     { | |
|       symm = -symm; // test a negative matrix | |
|     } | |
| 
 | |
|     SquareMatrixType symmUp = symm.template triangularView<Upper>(); | |
|     SquareMatrixType symmLo = symm.template triangularView<Lower>(); | |
| 
 | |
|     LDLT<SquareMatrixType,Lower> ldltlo(symmLo); | |
|     VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); | |
|     vecX = ldltlo.solve(vecB); | |
|     VERIFY_IS_APPROX(symm * vecX, vecB); | |
|     matX = ldltlo.solve(matB); | |
|     VERIFY_IS_APPROX(symm * matX, matB); | |
| 
 | |
|     LDLT<SquareMatrixType,Upper> ldltup(symmUp); | |
|     VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); | |
|     vecX = ldltup.solve(vecB); | |
|     VERIFY_IS_APPROX(symm * vecX, vecB); | |
|     matX = ldltup.solve(matB); | |
|     VERIFY_IS_APPROX(symm * matX, matB); | |
| 
 | |
|     VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU())); | |
|     VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL())); | |
|     VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU())); | |
|     VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL())); | |
| 
 | |
|     if(MatrixType::RowsAtCompileTime==Dynamic) | |
|     { | |
|       // note : each inplace permutation requires a small temporary vector (mask) | |
|  | |
|       // check inplace solve | |
|       matX = matB; | |
|       VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0); | |
|       VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval()); | |
| 
 | |
| 
 | |
|       matX = matB; | |
|       VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0); | |
|       VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval()); | |
|     } | |
| 
 | |
|     // restore | |
|     if(sign == -1) | |
|       symm = -symm; | |
|      | |
|     // check matrices coming from linear constraints with Lagrange multipliers | |
|     if(rows>=3) | |
|     { | |
|       SquareMatrixType A = symm; | |
|       Index c = internal::random<Index>(0,rows-2); | |
|       A.bottomRightCorner(c,c).setZero(); | |
|       // Make sure a solution exists: | |
|       vecX.setRandom(); | |
|       vecB = A * vecX; | |
|       vecX.setZero(); | |
|       ldltlo.compute(A); | |
|       VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); | |
|       vecX = ldltlo.solve(vecB); | |
|       VERIFY_IS_APPROX(A * vecX, vecB); | |
|     } | |
|      | |
|     // check non-full rank matrices | |
|     if(rows>=3) | |
|     { | |
|       Index r = internal::random<Index>(1,rows-1); | |
|       Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r); | |
|       SquareMatrixType A = a * a.adjoint(); | |
|       // Make sure a solution exists: | |
|       vecX.setRandom(); | |
|       vecB = A * vecX; | |
|       vecX.setZero(); | |
|       ldltlo.compute(A); | |
|       VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); | |
|       vecX = ldltlo.solve(vecB); | |
|       VERIFY_IS_APPROX(A * vecX, vecB); | |
|     } | |
|      | |
|     // check matrices with a wide spectrum | |
|     if(rows>=3) | |
|     { | |
|       RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8); | |
|       Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows); | |
|       Matrix<RealScalar,Dynamic,1> d =  Matrix<RealScalar,Dynamic,1>::Random(rows); | |
|       for(Index k=0; k<rows; ++k) | |
|         d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s)); | |
|       SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); | |
|       // Make sure a solution exists: | |
|       vecX.setRandom(); | |
|       vecB = A * vecX; | |
|       vecX.setZero(); | |
|       ldltlo.compute(A); | |
|       VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); | |
|       vecX = ldltlo.solve(vecB); | |
| 
 | |
|       if(ldltlo.vectorD().real().cwiseAbs().minCoeff()>RealScalar(0)) | |
|       { | |
|         VERIFY_IS_APPROX(A * vecX,vecB); | |
|       } | |
|       else | |
|       { | |
|         RealScalar large_tol =  std::sqrt(test_precision<RealScalar>()); | |
|         VERIFY((A * vecX).isApprox(vecB, large_tol)); | |
|          | |
|         ++g_test_level; | |
|         VERIFY_IS_APPROX(A * vecX,vecB); | |
|         --g_test_level; | |
|       } | |
|     } | |
|   } | |
| 
 | |
|   // update/downdate | |
|   CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm)  )); | |
|   CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) )); | |
| } | |
| 
 | |
| template<typename MatrixType> void cholesky_cplx(const MatrixType& m) | |
| { | |
|   // classic test | |
|   cholesky(m); | |
| 
 | |
|   // test mixing real/scalar types | |
|  | |
|   typedef typename MatrixType::Index Index; | |
| 
 | |
|   Index rows = m.rows(); | |
|   Index cols = m.cols(); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef typename NumTraits<Scalar>::Real RealScalar; | |
|   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   RealMatrixType a0 = RealMatrixType::Random(rows,cols); | |
|   VectorType vecB = VectorType::Random(rows), vecX(rows); | |
|   MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); | |
|   RealMatrixType symm =  a0 * a0.adjoint(); | |
|   // let's make sure the matrix is not singular or near singular | |
|   for (int k=0; k<3; ++k) | |
|   { | |
|     RealMatrixType a1 = RealMatrixType::Random(rows,cols); | |
|     symm += a1 * a1.adjoint(); | |
|   } | |
| 
 | |
|   { | |
|     RealMatrixType symmLo = symm.template triangularView<Lower>(); | |
| 
 | |
|     LLT<RealMatrixType,Lower> chollo(symmLo); | |
|     VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); | |
|     vecX = chollo.solve(vecB); | |
|     VERIFY_IS_APPROX(symm * vecX, vecB); | |
| //     matX = chollo.solve(matB); | |
| //     VERIFY_IS_APPROX(symm * matX, matB); | |
|   } | |
| 
 | |
|   // LDLT | |
|   { | |
|     int sign = internal::random<int>()%2 ? 1 : -1; | |
| 
 | |
|     if(sign == -1) | |
|     { | |
|       symm = -symm; // test a negative matrix | |
|     } | |
| 
 | |
|     RealMatrixType symmLo = symm.template triangularView<Lower>(); | |
| 
 | |
|     LDLT<RealMatrixType,Lower> ldltlo(symmLo); | |
|     VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); | |
|     vecX = ldltlo.solve(vecB); | |
|     VERIFY_IS_APPROX(symm * vecX, vecB); | |
| //     matX = ldltlo.solve(matB); | |
| //     VERIFY_IS_APPROX(symm * matX, matB); | |
|   } | |
| } | |
| 
 | |
| // regression test for bug 241 | |
| template<typename MatrixType> void cholesky_bug241(const MatrixType& m) | |
| { | |
|   eigen_assert(m.rows() == 2 && m.cols() == 2); | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar; | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | |
| 
 | |
|   MatrixType matA; | |
|   matA << 1, 1, 1, 1; | |
|   VectorType vecB; | |
|   vecB << 1, 1; | |
|   VectorType vecX = matA.ldlt().solve(vecB); | |
|   VERIFY_IS_APPROX(matA * vecX, vecB); | |
| } | |
| 
 | |
| // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal. | |
| // This test checks that LDLT reports correctly that matrix is indefinite.  | |
| // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736 | |
| template<typename MatrixType> void cholesky_definiteness(const MatrixType& m) | |
| { | |
|   eigen_assert(m.rows() == 2 && m.cols() == 2); | |
|   MatrixType mat; | |
|   LDLT<MatrixType> ldlt(2); | |
|    | |
|   { | |
|     mat << 1, 0, 0, -1; | |
|     ldlt.compute(mat); | |
|     VERIFY(!ldlt.isNegative()); | |
|     VERIFY(!ldlt.isPositive()); | |
|   } | |
|   { | |
|     mat << 1, 2, 2, 1; | |
|     ldlt.compute(mat); | |
|     VERIFY(!ldlt.isNegative()); | |
|     VERIFY(!ldlt.isPositive()); | |
|   } | |
|   { | |
|     mat << 0, 0, 0, 0; | |
|     ldlt.compute(mat); | |
|     VERIFY(ldlt.isNegative()); | |
|     VERIFY(ldlt.isPositive()); | |
|   } | |
|   { | |
|     mat << 0, 0, 0, 1; | |
|     ldlt.compute(mat); | |
|     VERIFY(!ldlt.isNegative()); | |
|     VERIFY(ldlt.isPositive()); | |
|   } | |
|   { | |
|     mat << -1, 0, 0, 0; | |
|     ldlt.compute(mat); | |
|     VERIFY(ldlt.isNegative()); | |
|     VERIFY(!ldlt.isPositive()); | |
|   } | |
| } | |
| 
 | |
| template<typename MatrixType> void cholesky_verify_assert() | |
| { | |
|   MatrixType tmp; | |
| 
 | |
|   LLT<MatrixType> llt; | |
|   VERIFY_RAISES_ASSERT(llt.matrixL()) | |
|   VERIFY_RAISES_ASSERT(llt.matrixU()) | |
|   VERIFY_RAISES_ASSERT(llt.solve(tmp)) | |
|   VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp)) | |
| 
 | |
|   LDLT<MatrixType> ldlt; | |
|   VERIFY_RAISES_ASSERT(ldlt.matrixL()) | |
|   VERIFY_RAISES_ASSERT(ldlt.permutationP()) | |
|   VERIFY_RAISES_ASSERT(ldlt.vectorD()) | |
|   VERIFY_RAISES_ASSERT(ldlt.isPositive()) | |
|   VERIFY_RAISES_ASSERT(ldlt.isNegative()) | |
|   VERIFY_RAISES_ASSERT(ldlt.solve(tmp)) | |
|   VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp)) | |
| } | |
| 
 | |
| void test_cholesky() | |
| { | |
|   int s = 0; | |
|   for(int i = 0; i < g_repeat; i++) { | |
|     CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) ); | |
|     CALL_SUBTEST_3( cholesky(Matrix2d()) ); | |
|     CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) ); | |
|     CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) ); | |
|     CALL_SUBTEST_4( cholesky(Matrix3f()) ); | |
|     CALL_SUBTEST_5( cholesky(Matrix4d()) ); | |
|      | |
|     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);     | |
|     CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) ); | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s) | |
|      | |
|     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); | |
|     CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) ); | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s) | |
|   } | |
| 
 | |
|   CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() ); | |
|   CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() ); | |
|   CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() ); | |
|   CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() ); | |
| 
 | |
|   // Test problem size constructors | |
|   CALL_SUBTEST_9( LLT<MatrixXf>(10) ); | |
|   CALL_SUBTEST_9( LDLT<MatrixXf>(10) ); | |
|    | |
|   TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries) | |
| }
 |