497 lines
14 KiB
497 lines
14 KiB
/**
|
|
@file
|
|
|
|
@ingroup cudd
|
|
|
|
@brief Cofactoring functions.
|
|
|
|
@author Fabio Somenzi
|
|
|
|
@copyright@parblock
|
|
Copyright (c) 1995-2015, Regents of the University of Colorado
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
Neither the name of the University of Colorado nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
@endparblock
|
|
|
|
*/
|
|
|
|
#include "util.h"
|
|
#include "cuddInt.h"
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Constant declarations */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Stucture declarations */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Type declarations */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Variable declarations */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Macro declarations */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/** \cond */
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Static function prototypes */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
static int ddVarsAreSymmetricBefore(DdManager * dd, DdNode * f, DdNode * var1, DdNode * var2);
|
|
static int ddVarsAreSymmetricBetween(DdManager * dd, DdNode * f1, DdNode * f0, DdNode * var2);
|
|
|
|
/** \endcond */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Definition of exported functions */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/**
|
|
@brief Computes the cofactor of f with respect to g.
|
|
|
|
@details g must be the %BDD or the %ADD of a cube.
|
|
|
|
@return a pointer to the cofactor if successful; NULL otherwise.
|
|
|
|
@sideeffect None
|
|
|
|
@see Cudd_bddConstrain Cudd_bddRestrict
|
|
|
|
*/
|
|
DdNode *
|
|
Cudd_Cofactor(
|
|
DdManager * dd,
|
|
DdNode * f,
|
|
DdNode * g)
|
|
{
|
|
DdNode *res,*zero;
|
|
|
|
zero = Cudd_Not(DD_ONE(dd));
|
|
if (g == zero || g == DD_ZERO(dd)) {
|
|
(void) fprintf(dd->err,"Cudd_Cofactor: Invalid restriction 1\n");
|
|
dd->errorCode = CUDD_INVALID_ARG;
|
|
return(NULL);
|
|
}
|
|
do {
|
|
dd->reordered = 0;
|
|
res = cuddCofactorRecur(dd,f,g);
|
|
} while (dd->reordered == 1);
|
|
if (dd->errorCode == CUDD_TIMEOUT_EXPIRED && dd->timeoutHandler) {
|
|
dd->timeoutHandler(dd, dd->tohArg);
|
|
}
|
|
return(res);
|
|
|
|
} /* end of Cudd_Cofactor */
|
|
|
|
|
|
/**
|
|
@brief Checks whether g is the %BDD of a cube.
|
|
|
|
@details The constant 1 is a valid cube, but all other constant
|
|
functions cause cuddCheckCube to return 0.
|
|
|
|
@return 1 in case of success; 0 otherwise.
|
|
|
|
@sideeffect None
|
|
|
|
*/
|
|
int
|
|
Cudd_CheckCube(
|
|
DdManager * dd,
|
|
DdNode * g)
|
|
{
|
|
DdNode *g1,*g0,*one,*zero;
|
|
|
|
one = DD_ONE(dd);
|
|
if (g == one) return(1);
|
|
if (Cudd_Not(g) == one) return(0);
|
|
|
|
zero = Cudd_Not(one);
|
|
cuddGetBranches(g,&g1,&g0);
|
|
|
|
if (g0 == zero) {
|
|
return(Cudd_CheckCube(dd, g1));
|
|
}
|
|
if (g1 == zero) {
|
|
return(Cudd_CheckCube(dd, g0));
|
|
}
|
|
return(0);
|
|
|
|
} /* end of Cudd_CheckCube */
|
|
|
|
|
|
/**
|
|
@brief Checks whether two variables are symmetric in a BDD.
|
|
|
|
@return 1 if the variables are symmetric; 0 if they are not.
|
|
|
|
@details No nodes are built during the check.
|
|
|
|
@sideeffect None
|
|
*/
|
|
int
|
|
Cudd_VarsAreSymmetric(
|
|
DdManager * dd /**< manager */,
|
|
DdNode * f /**< BDD whose variables are tested */,
|
|
int index1 /**< index of first variable */,
|
|
int index2 /**< index of second variable */)
|
|
{
|
|
DdNode *var1, *var2;
|
|
|
|
if (index1 == index2) /* trivial case: symmetry is reflexive */
|
|
return(1);
|
|
|
|
if (index1 >= dd->size) {
|
|
if (index2 >= dd->size) {
|
|
return(1); /* f depends on neither variable */
|
|
} else {
|
|
/* f does not depend on var1; check whether it depends on var2 */
|
|
var2 = dd->vars[index2];
|
|
return ddVarsAreSymmetricBetween(dd, f, f, var2);
|
|
}
|
|
} else if (index2 >= dd->size) {
|
|
/* f does not depend on var2; check whether it depends on var1 */
|
|
var1 = dd->vars[index1];
|
|
return ddVarsAreSymmetricBetween(dd, f, f, var1);
|
|
}
|
|
|
|
/* Make sure index1 denotes the variable currently closer to the root. */
|
|
if (dd->perm[index1] < dd->perm[index2]) {
|
|
var1 = dd->vars[index1];
|
|
var2 = dd->vars[index2];
|
|
} else {
|
|
var1 = dd->vars[index2];
|
|
var2 = dd->vars[index1];
|
|
}
|
|
|
|
return ddVarsAreSymmetricBefore(dd, f, var1, var2);
|
|
|
|
} /* end of Cudd_VarsAreSymmetric */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Definition of internal functions */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
|
|
/**
|
|
@brief Computes the children of g.
|
|
|
|
@sideeffect None
|
|
|
|
*/
|
|
void
|
|
cuddGetBranches(
|
|
DdNode * g,
|
|
DdNode ** g1,
|
|
DdNode ** g0)
|
|
{
|
|
DdNode *G = Cudd_Regular(g);
|
|
|
|
*g1 = cuddT(G);
|
|
*g0 = cuddE(G);
|
|
if (Cudd_IsComplement(g)) {
|
|
*g1 = Cudd_Not(*g1);
|
|
*g0 = Cudd_Not(*g0);
|
|
}
|
|
|
|
} /* end of cuddGetBranches */
|
|
|
|
|
|
/**
|
|
@brief Performs the recursive step of Cudd_Cofactor.
|
|
|
|
@return a pointer to the cofactor if successful; NULL otherwise.
|
|
|
|
@sideeffect None
|
|
|
|
@see Cudd_Cofactor
|
|
|
|
*/
|
|
DdNode *
|
|
cuddCofactorRecur(
|
|
DdManager * dd,
|
|
DdNode * f,
|
|
DdNode * g)
|
|
{
|
|
DdNode *one,*zero,*F,*G,*g1,*g0,*f1,*f0,*t,*e,*r;
|
|
int topf,topg;
|
|
int comple;
|
|
|
|
statLine(dd);
|
|
F = Cudd_Regular(f);
|
|
if (cuddIsConstant(F)) return(f);
|
|
|
|
one = DD_ONE(dd);
|
|
|
|
/* The invariant g != 0 is true on entry to this procedure and is
|
|
** recursively maintained by it. Therefore it suffices to test g
|
|
** against one to make sure it is not constant.
|
|
*/
|
|
if (g == one) return(f);
|
|
/* From now on, f and g are known not to be constants. */
|
|
|
|
comple = f != F;
|
|
r = cuddCacheLookup2(dd,Cudd_Cofactor,F,g);
|
|
if (r != NULL) {
|
|
return(Cudd_NotCond(r,comple));
|
|
}
|
|
|
|
checkWhetherToGiveUp(dd);
|
|
|
|
topf = dd->perm[F->index];
|
|
G = Cudd_Regular(g);
|
|
topg = dd->perm[G->index];
|
|
|
|
/* We take the cofactors of F because we are going to rely on
|
|
** the fact that the cofactors of the complement are the complements
|
|
** of the cofactors to better utilize the cache. Variable comple
|
|
** remembers whether we have to complement the result or not.
|
|
*/
|
|
if (topf <= topg) {
|
|
f1 = cuddT(F); f0 = cuddE(F);
|
|
} else {
|
|
f1 = f0 = F;
|
|
}
|
|
if (topg <= topf) {
|
|
g1 = cuddT(G); g0 = cuddE(G);
|
|
if (g != G) { g1 = Cudd_Not(g1); g0 = Cudd_Not(g0); }
|
|
} else {
|
|
g1 = g0 = g;
|
|
}
|
|
|
|
zero = Cudd_Not(one);
|
|
if (topf >= topg) {
|
|
if (g0 == zero || g0 == DD_ZERO(dd)) {
|
|
r = cuddCofactorRecur(dd, f1, g1);
|
|
} else if (g1 == zero || g1 == DD_ZERO(dd)) {
|
|
r = cuddCofactorRecur(dd, f0, g0);
|
|
} else {
|
|
(void) fprintf(dd->err,
|
|
"Cudd_Cofactor: Invalid restriction 2\n");
|
|
dd->errorCode = CUDD_INVALID_ARG;
|
|
return(NULL);
|
|
}
|
|
if (r == NULL) return(NULL);
|
|
} else /* if (topf < topg) */ {
|
|
t = cuddCofactorRecur(dd, f1, g);
|
|
if (t == NULL) return(NULL);
|
|
cuddRef(t);
|
|
e = cuddCofactorRecur(dd, f0, g);
|
|
if (e == NULL) {
|
|
Cudd_RecursiveDeref(dd, t);
|
|
return(NULL);
|
|
}
|
|
cuddRef(e);
|
|
|
|
if (t == e) {
|
|
r = t;
|
|
} else if (Cudd_IsComplement(t)) {
|
|
r = cuddUniqueInter(dd,(int)F->index,Cudd_Not(t),Cudd_Not(e));
|
|
if (r != NULL)
|
|
r = Cudd_Not(r);
|
|
} else {
|
|
r = cuddUniqueInter(dd,(int)F->index,t,e);
|
|
}
|
|
if (r == NULL) {
|
|
Cudd_RecursiveDeref(dd ,e);
|
|
Cudd_RecursiveDeref(dd ,t);
|
|
return(NULL);
|
|
}
|
|
cuddDeref(t);
|
|
cuddDeref(e);
|
|
}
|
|
|
|
cuddCacheInsert2(dd,Cudd_Cofactor,F,g,r);
|
|
|
|
return(Cudd_NotCond(r,comple));
|
|
|
|
} /* end of cuddCofactorRecur */
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
/* Definition of static functions */
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
@brief Implements the upper recursive step of Cudd_VarsAreSymmetric().
|
|
|
|
@details The assumption is made that the level of index1 is less
|
|
than the level of index2.
|
|
|
|
@return 1 if the variables are symmetric for the given function;
|
|
0 if they are not.
|
|
|
|
@see Cudd_VarsAreSymmetric ddVarsAreSymmetricBetween
|
|
|
|
*/
|
|
static int
|
|
ddVarsAreSymmetricBefore(
|
|
DdManager * dd,
|
|
DdNode * f,
|
|
DdNode * var1,
|
|
DdNode * var2)
|
|
{
|
|
DdNode *F, *ft, *fe, *r;
|
|
int top, res, level1;
|
|
|
|
statLine(dd);
|
|
F = Cudd_Regular(f);
|
|
if (cuddIsConstant(F)) /* f depends on neither variable */
|
|
return(1);
|
|
top = dd->perm[F->index];
|
|
if (top > dd->perm[var2->index])
|
|
return(1); /* f depends on neither variable */
|
|
/* Cache lookup. We take advantage of the observation that
|
|
* var1 and var2 are symmetric in f iff they are symmetric in
|
|
* the complement of f. */
|
|
r = cuddCacheLookup(dd, DD_VARS_SYMM_BEFORE_TAG, F, var1, var2);
|
|
if (r != NULL) {
|
|
return(r == DD_ONE(dd) ? 1 : 0);
|
|
}
|
|
level1 = dd->perm[var1->index];
|
|
if (top > level1)
|
|
/* Check whether f1 depends on the variable currently at level2. */
|
|
return ddVarsAreSymmetricBetween(dd, f, f, var2);
|
|
ft = cuddT(F);
|
|
fe = cuddE(F);
|
|
if (F != f) {
|
|
ft = Cudd_Not(ft);
|
|
fe = Cudd_Not(fe);
|
|
}
|
|
if (top < level1) {
|
|
res = ddVarsAreSymmetricBefore(dd, ft, var1, var2);
|
|
if (res)
|
|
res = ddVarsAreSymmetricBefore(dd, fe, var1, var2);
|
|
} else {
|
|
res = ddVarsAreSymmetricBetween(dd, ft, fe, var2);
|
|
}
|
|
/* Cache insertion. */
|
|
cuddCacheInsert(dd, DD_VARS_SYMM_BEFORE_TAG, F, var1, var2,
|
|
res ? DD_ONE(dd) : Cudd_Not(DD_ONE(dd)));
|
|
return(res);
|
|
|
|
} /* end of ddVarsAreSymmetricBefore */
|
|
|
|
|
|
/**
|
|
@brief Implements the lower recursive step of Cudd_VarsAreSymmetric().
|
|
|
|
@return 1 if the negative cofactor of the first argument w.r.t. the variable
|
|
currently at level2 is the same as the positive cofactor of the second
|
|
argument; 0 if the two cofactors are not the same.
|
|
|
|
@see Cudd_VarsAreSymmetric ddVarsAreSymmetricBefore
|
|
|
|
*/
|
|
static int
|
|
ddVarsAreSymmetricBetween(
|
|
DdManager * dd,
|
|
DdNode * f1,
|
|
DdNode * f0,
|
|
DdNode * var2)
|
|
{
|
|
DdNode *F1, *F0, *f1t, *f1e, *f0t, *f0e, *r;
|
|
int topf1, topf0, top, res;
|
|
int level2 = dd->perm[var2->index];
|
|
|
|
statLine(dd);
|
|
F1 = Cudd_Regular(f1);
|
|
F0 = Cudd_Regular(f0);
|
|
if (cuddIsConstant(F1) && cuddIsConstant(F0))
|
|
return f1 == f0;
|
|
/* Here we know that one of f1 and f0 is not constant. Hence the
|
|
* least index is that of a variable. */
|
|
if (cuddIsConstant(F1))
|
|
topf1 = CUDD_CONST_INDEX;
|
|
else
|
|
topf1 = dd->perm[F1->index];
|
|
if (cuddIsConstant(F0))
|
|
topf0 = CUDD_CONST_INDEX;
|
|
else
|
|
topf0 = dd->perm[F0->index];
|
|
if (topf0 > level2 && topf1 > level2)
|
|
return(f1 == f0);
|
|
/* Cache lookup. */
|
|
r = cuddCacheLookup(dd, DD_VARS_SYMM_BETWEEN_TAG, f1, f0, var2);
|
|
if (r != NULL) {
|
|
return(r == DD_ONE(dd) ? 1 : 0);
|
|
}
|
|
/* Compute cofactors and find top level. */
|
|
if (topf1 <= topf0) {
|
|
top = topf1;
|
|
f1t = cuddT(F1);
|
|
f1e = cuddE(F1);
|
|
if (F1 != f1) {
|
|
f1t = Cudd_Not(f1t);
|
|
f1e = Cudd_Not(f1e);
|
|
}
|
|
} else {
|
|
top = topf0;
|
|
f1t = f1e = f1;
|
|
}
|
|
if (topf0 <= topf1) {
|
|
f0t = cuddT(F0);
|
|
f0e = cuddE(F0);
|
|
if (F0 != f0) {
|
|
f0t = Cudd_Not(f0t);
|
|
f0e = Cudd_Not(f0e);
|
|
}
|
|
} else {
|
|
f0t = f0e = f0;
|
|
}
|
|
if (top < level2) {
|
|
res = ddVarsAreSymmetricBetween(dd, f1t, f0t, var2);
|
|
if (res)
|
|
res = ddVarsAreSymmetricBetween(dd, f1e, f0e, var2);
|
|
} else {
|
|
assert(top == level2);
|
|
res = f1e == f0t;
|
|
}
|
|
/* Cache insertion. */
|
|
cuddCacheInsert(dd, DD_VARS_SYMM_BETWEEN_TAG, f1, f0, var2,
|
|
res ? DD_ONE(dd) : Cudd_Not(DD_ONE(dd)));
|
|
return(res);
|
|
|
|
} /* end of ddVarsAreSymmetricBetween */
|