You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							165 lines
						
					
					
						
							6.0 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							165 lines
						
					
					
						
							6.0 KiB
						
					
					
				
								/* -*- c++ -*- (enables emacs c++ mode) */
							 | 
						|
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2002-2012 Yves Renard
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								 As a special exception, you  may use  this file  as it is a part of a free
							 | 
						|
								 software  library  without  restriction.  Specifically,  if   other  files
							 | 
						|
								 instantiate  templates  or  use macros or inline functions from this file,
							 | 
						|
								 or  you compile this  file  and  link  it  with other files  to produce an
							 | 
						|
								 executable, this file  does  not  by itself cause the resulting executable
							 | 
						|
								 to be covered  by the GNU Lesser General Public License.  This   exception
							 | 
						|
								 does not  however  invalidate  any  other  reasons why the executable file
							 | 
						|
								 might be covered by the GNU Lesser General Public License.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								
							 | 
						|
								/**@file gmm_solver_constrained_cg.h
							 | 
						|
								   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
							 | 
						|
								   @date October 13, 2002.
							 | 
						|
								   @brief Constrained conjugate gradient. */
							 | 
						|
								//  preconditionning does not work
							 | 
						|
								
							 | 
						|
								#ifndef GMM_SOLVER_CCG_H__
							 | 
						|
								#define GMM_SOLVER_CCG_H__
							 | 
						|
								
							 | 
						|
								#include "gmm_kernel.h"
							 | 
						|
								#include "gmm_iter.h"
							 | 
						|
								
							 | 
						|
								namespace gmm {
							 | 
						|
								
							 | 
						|
								  template <typename CMatrix, typename CINVMatrix, typename Matps,
							 | 
						|
									    typename VectorX>
							 | 
						|
								  void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV,
							 | 
						|
										      const Matps& /* PS */, VectorX&) {
							 | 
						|
								    // compute the pseudo inverse of the non-square matrix C such
							 | 
						|
								    // CINV = inv(C * trans(C)) * C.
							 | 
						|
								    // based on a conjugate gradient method.
							 | 
						|
								    
							 | 
						|
								    // optimisable : copie de la ligne, precalcul de C * trans(C).
							 | 
						|
								    
							 | 
						|
								    typedef VectorX TmpVec;
							 | 
						|
								    typedef typename linalg_traits<VectorX>::value_type value_type;
							 | 
						|
								    
							 | 
						|
								    size_type nr = mat_nrows(C), nc = mat_ncols(C);
							 | 
						|
								    
							 | 
						|
								    TmpVec d(nr), e(nr), l(nc), p(nr), q(nr), r(nr);
							 | 
						|
								    value_type rho, rho_1, alpha;
							 | 
						|
								    clear(d);
							 | 
						|
								    clear(CINV);
							 | 
						|
								    
							 | 
						|
								    for (size_type i = 0; i < nr; ++i) {
							 | 
						|
								      d[i] = 1.0; rho = 1.0;
							 | 
						|
								      clear(e);
							 | 
						|
								      copy(d, r);
							 | 
						|
								      copy(d, p);
							 | 
						|
								      
							 | 
						|
								      while (rho >= 1E-38) { /* conjugate gradient to compute e             */
							 | 
						|
									                     /* which is the i nd row of inv(C * trans(C))  */
							 | 
						|
									mult(gmm::transposed(C), p, l);
							 | 
						|
									mult(C, l, q);	  
							 | 
						|
									alpha = rho / vect_sp(p, q);
							 | 
						|
									add(scaled(p, alpha), e);  
							 | 
						|
									add(scaled(q, -alpha), r); 
							 | 
						|
									rho_1 = rho;
							 | 
						|
									rho = vect_sp(r, r);
							 | 
						|
									add(r, scaled(p, rho / rho_1), p);
							 | 
						|
								      }
							 | 
						|
								      
							 | 
						|
								      mult(transposed(C), e, l); /* l is the i nd row of CINV     */
							 | 
						|
								      // cout << "l = " << l << endl;
							 | 
						|
								      clean(l, 1E-15);
							 | 
						|
								      copy(l, mat_row(CINV, i));
							 | 
						|
								      
							 | 
						|
								      d[i] = 0.0;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  /** Compute the minimum of @f$ 1/2((Ax).x) - bx @f$ under the contraint @f$ Cx <= f @f$ */
							 | 
						|
								  template < typename Matrix,  typename CMatrix, typename Matps,
							 | 
						|
									     typename VectorX, typename VectorB, typename VectorF,
							 | 
						|
									     typename Preconditioner >
							 | 
						|
								  void constrained_cg(const Matrix& A, const CMatrix& C, VectorX& x,
							 | 
						|
										      const VectorB& b, const VectorF& f,const Matps& PS,
							 | 
						|
										      const Preconditioner& M, iteration &iter) {
							 | 
						|
								    typedef typename temporary_dense_vector<VectorX>::vector_type TmpVec;
							 | 
						|
								    typedef typename temporary_vector<CMatrix>::vector_type TmpCVec;
							 | 
						|
								    typedef row_matrix<TmpCVec> TmpCmat;
							 | 
						|
								    
							 | 
						|
								    typedef typename linalg_traits<VectorX>::value_type value_type;
							 | 
						|
								    value_type rho = 1.0, rho_1, lambda, gamma;
							 | 
						|
								    TmpVec p(vect_size(x)), q(vect_size(x)), q2(vect_size(x)),
							 | 
						|
								      r(vect_size(x)), old_z(vect_size(x)), z(vect_size(x)),
							 | 
						|
								      memox(vect_size(x));
							 | 
						|
								    std::vector<bool> satured(mat_nrows(C));
							 | 
						|
								    clear(p);
							 | 
						|
								    iter.set_rhsnorm(sqrt(vect_sp(PS, b, b)));
							 | 
						|
								    if (iter.get_rhsnorm() == 0.0) iter.set_rhsnorm(1.0);
							 | 
						|
								   
							 | 
						|
								    TmpCmat CINV(mat_nrows(C), mat_ncols(C));
							 | 
						|
								    pseudo_inverse(C, CINV, PS, x);
							 | 
						|
								    
							 | 
						|
								    while(true) {
							 | 
						|
								      // computation of residu
							 | 
						|
								      copy(z, old_z);
							 | 
						|
								      copy(x, memox);
							 | 
						|
								      mult(A, scaled(x, -1.0), b, r);
							 | 
						|
								      mult(M, r, z); // preconditionner not coherent
							 | 
						|
								      bool transition = false;
							 | 
						|
								      for (size_type i = 0; i < mat_nrows(C); ++i) {
							 | 
						|
									value_type al = vect_sp(mat_row(C, i), x) - f[i];
							 | 
						|
									if (al >= -1.0E-15) {
							 | 
						|
									  if (!satured[i]) { satured[i] = true; transition = true; }
							 | 
						|
									  value_type bb = vect_sp(mat_row(CINV, i), z);
							 | 
						|
									  if (bb > 0.0) add(scaled(mat_row(C, i), -bb), z);
							 | 
						|
									}
							 | 
						|
									else
							 | 
						|
									  satured[i] = false;
							 | 
						|
								      }
							 | 
						|
								    
							 | 
						|
								      // descent direction
							 | 
						|
								      rho_1 = rho; rho = vect_sp(PS, r, z); // ...
							 | 
						|
								      
							 | 
						|
								      if (iter.finished(rho)) break;
							 | 
						|
								      
							 | 
						|
								      if (iter.get_noisy() > 0 && transition) std::cout << "transition\n";
							 | 
						|
								      if (transition || iter.first()) gamma = 0.0;
							 | 
						|
								      else gamma = std::max(0.0, (rho - vect_sp(PS, old_z, z) ) / rho_1);
							 | 
						|
								      // std::cout << "gamma = " << gamma << endl;
							 | 
						|
								      // itl::add(r, itl::scaled(p, gamma), p);
							 | 
						|
								      add(z, scaled(p, gamma), p); // ...
							 | 
						|
								      
							 | 
						|
								      ++iter;
							 | 
						|
								      // one dimensionnal optimization
							 | 
						|
								      mult(A, p, q);
							 | 
						|
								      lambda = rho / vect_sp(PS, q, p);
							 | 
						|
								      for (size_type i = 0; i < mat_nrows(C); ++i)
							 | 
						|
									if (!satured[i]) {
							 | 
						|
									  value_type bb = vect_sp(mat_row(C, i), p) - f[i];
							 | 
						|
									  if (bb > 0.0)
							 | 
						|
									    lambda = std::min(lambda, (f[i]-vect_sp(mat_row(C, i), x)) / bb);
							 | 
						|
									}
							 | 
						|
								      add(x, scaled(p, lambda), x);
							 | 
						|
								      add(memox, scaled(x, -1.0), memox);
							 | 
						|
								      
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif //  GMM_SOLVER_CCG_H__
							 |