You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							284 lines
						
					
					
						
							9.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							284 lines
						
					
					
						
							9.8 KiB
						
					
					
				
								/* -*- c++ -*- (enables emacs c++ mode) */
							 | 
						|
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2004-2012 Yves Renard
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								 As a special exception, you  may use  this file  as it is a part of a free
							 | 
						|
								 software  library  without  restriction.  Specifically,  if   other  files
							 | 
						|
								 instantiate  templates  or  use macros or inline functions from this file,
							 | 
						|
								 or  you compile this  file  and  link  it  with other files  to produce an
							 | 
						|
								 executable, this file  does  not  by itself cause the resulting executable
							 | 
						|
								 to be covered  by the GNU Lesser General Public License.  This   exception
							 | 
						|
								 does not  however  invalidate  any  other  reasons why the executable file
							 | 
						|
								 might be covered by the GNU Lesser General Public License.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								
							 | 
						|
								/**@file gmm_precond_ilutp.h
							 | 
						|
								   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
							 | 
						|
								   @date October 14, 2004.
							 | 
						|
								   @brief ILUTP: Incomplete LU with threshold and K fill-in Preconditioner and
							 | 
						|
								   column pivoting.
							 | 
						|
								
							 | 
						|
								   
							 | 
						|
								*/
							 | 
						|
								#ifndef GMM_PRECOND_ILUTP_H
							 | 
						|
								#define GMM_PRECOND_ILUTP_H
							 | 
						|
								
							 | 
						|
								#include "gmm_precond_ilut.h"
							 | 
						|
								
							 | 
						|
								namespace gmm {
							 | 
						|
								
							 | 
						|
								  /**
							 | 
						|
								     ILUTP: Incomplete LU with threshold and K fill-in Preconditioner and
							 | 
						|
								     column pivoting.
							 | 
						|
								   
							 | 
						|
								     See Yousef Saad, Iterative Methods for
							 | 
						|
								     sparse linear systems, PWS Publishing Company, section 10.4.4
							 | 
						|
								
							 | 
						|
								      TODO : store the permutation by cycles to avoid the temporary vector
							 | 
						|
								  */
							 | 
						|
								  template <typename Matrix>
							 | 
						|
								  class ilutp_precond  {
							 | 
						|
								  public :
							 | 
						|
								    typedef typename linalg_traits<Matrix>::value_type value_type;
							 | 
						|
								    typedef wsvector<value_type> _wsvector;
							 | 
						|
								    typedef rsvector<value_type> _rsvector;
							 | 
						|
								    typedef row_matrix<_rsvector> LU_Matrix;
							 | 
						|
								    typedef col_matrix<_wsvector> CLU_Matrix;
							 | 
						|
								
							 | 
						|
								    bool invert;
							 | 
						|
								    LU_Matrix L, U;
							 | 
						|
								    gmm::unsorted_sub_index indperm;
							 | 
						|
								    gmm::unsorted_sub_index indperminv;
							 | 
						|
								    mutable std::vector<value_type> temporary;
							 | 
						|
								
							 | 
						|
								  protected:
							 | 
						|
								    size_type K;
							 | 
						|
								    double eps;
							 | 
						|
								
							 | 
						|
								    template<typename M> void do_ilutp(const M&, row_major);
							 | 
						|
								    void do_ilutp(const Matrix&, col_major);
							 | 
						|
								
							 | 
						|
								  public:
							 | 
						|
								    void build_with(const Matrix& A, int k_ = -1, double eps_ = double(-1)) {
							 | 
						|
								      if (k_ >= 0) K = k_;
							 | 
						|
								      if (eps_ >= double(0)) eps = eps_;
							 | 
						|
								      invert = false;
							 | 
						|
								      gmm::resize(L, mat_nrows(A), mat_ncols(A));
							 | 
						|
								      gmm::resize(U, mat_nrows(A), mat_ncols(A));
							 | 
						|
								      do_ilutp(A, typename principal_orientation_type<typename
							 | 
						|
									      linalg_traits<Matrix>::sub_orientation>::potype());
							 | 
						|
								    }
							 | 
						|
								    ilutp_precond(const Matrix& A, size_type k_, double eps_) 
							 | 
						|
								      : L(mat_nrows(A), mat_ncols(A)), U(mat_nrows(A), mat_ncols(A)),
							 | 
						|
									K(k_), eps(eps_) { build_with(A); }
							 | 
						|
								    ilutp_precond(int k_, double eps_) :  K(k_), eps(eps_) {}
							 | 
						|
								    ilutp_precond(void) { K = 10; eps = 1E-7; }
							 | 
						|
								    size_type memsize() const { 
							 | 
						|
								      return sizeof(*this) + (nnz(U)+nnz(L))*sizeof(value_type);
							 | 
						|
								    }
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  template<typename Matrix> template<typename M> 
							 | 
						|
								  void ilutp_precond<Matrix>::do_ilutp(const M& A, row_major) {
							 | 
						|
								    typedef value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								
							 | 
						|
								    size_type n = mat_nrows(A);
							 | 
						|
								    CLU_Matrix CU(n,n);
							 | 
						|
								    if (n == 0) return;
							 | 
						|
								    std::vector<T> indiag(n);
							 | 
						|
								    temporary.resize(n);
							 | 
						|
								    std::vector<size_type> ipvt(n), ipvtinv(n);
							 | 
						|
								    for (size_type i = 0; i < n; ++i) ipvt[i] = ipvtinv[i] = i;
							 | 
						|
								    indperm = unsorted_sub_index(ipvt);
							 | 
						|
								    indperminv = unsorted_sub_index(ipvtinv);
							 | 
						|
								    _wsvector w(mat_ncols(A));
							 | 
						|
								    _rsvector ww(mat_ncols(A));
							 | 
						|
								    
							 | 
						|
								    T tmp = T(0);
							 | 
						|
								    gmm::clear(L); gmm::clear(U);
							 | 
						|
								    R prec = default_tol(R()); 
							 | 
						|
								    R max_pivot = gmm::abs(A(0,0)) * prec;
							 | 
						|
								
							 | 
						|
								    for (size_type i = 0; i < n; ++i) {
							 | 
						|
								
							 | 
						|
								      copy(sub_vector(mat_const_row(A, i), indperm), w);
							 | 
						|
								      double norm_row = gmm::vect_norm2(mat_const_row(A, i)); 
							 | 
						|
								
							 | 
						|
								      typename _wsvector::iterator wkold = w.end();
							 | 
						|
								      for (typename _wsvector::iterator wk = w.begin();
							 | 
						|
									   wk != w.end() && wk->first < i; )  {
							 | 
						|
									size_type k = wk->first;
							 | 
						|
									tmp = (wk->second) * indiag[k];
							 | 
						|
									if (gmm::abs(tmp) < eps * norm_row) w.erase(k); 
							 | 
						|
									else { wk->second += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); }
							 | 
						|
									if (wkold == w.end()) wk = w.begin(); else { wk = wkold; ++wk; }
							 | 
						|
									if (wk != w.end() && wk->first == k)
							 | 
						|
									  { if (wkold == w.end()) wkold = w.begin(); else ++wkold; ++wk; }
							 | 
						|
								      }
							 | 
						|
								
							 | 
						|
								      gmm::clean(w, eps * norm_row);
							 | 
						|
								      gmm::copy(w, ww);
							 | 
						|
								
							 | 
						|
								      std::sort(ww.begin(), ww.end(), elt_rsvector_value_less_<T>());
							 | 
						|
								      typename _rsvector::const_iterator wit = ww.begin(), wite = ww.end();
							 | 
						|
								      size_type ip = size_type(-1);
							 | 
						|
								
							 | 
						|
								      for (; wit != wite; ++wit)
							 | 
						|
									if (wit->c >= i) { ip = wit->c; tmp = wit->e; break; }
							 | 
						|
								      if (ip == size_type(-1) || gmm::abs(tmp) <= max_pivot)
							 | 
						|
									{ GMM_WARNING2("pivot " << i << " too small"); ip=i; ww[i]=tmp=T(1); }
							 | 
						|
								      max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1)));
							 | 
						|
								      indiag[i] = T(1) / tmp;
							 | 
						|
								      wit = ww.begin();
							 | 
						|
								
							 | 
						|
								      size_type nnl = 0, nnu = 0;
							 | 
						|
								      L[i].base_resize(K); U[i].base_resize(K+1);
							 | 
						|
								      typename _rsvector::iterator witL = L[i].begin(), witU = U[i].begin();
							 | 
						|
								      for (; wit != wite; ++wit) {
							 | 
						|
									if (wit->c < i) { if (nnl < K) { *witL++ = *wit; ++nnl; } }
							 | 
						|
									else if (nnu < K || wit->c == i)
							 | 
						|
									  { CU(i, wit->c) = wit->e; *witU++ = *wit; ++nnu; }
							 | 
						|
								      }
							 | 
						|
								      L[i].base_resize(nnl); U[i].base_resize(nnu);
							 | 
						|
								      std::sort(L[i].begin(), L[i].end());
							 | 
						|
								      std::sort(U[i].begin(), U[i].end());
							 | 
						|
								
							 | 
						|
								      if (ip != i) {
							 | 
						|
									typename _wsvector::const_iterator iti = CU.col(i).begin();
							 | 
						|
									typename _wsvector::const_iterator itie = CU.col(i).end();
							 | 
						|
									typename _wsvector::const_iterator itp = CU.col(ip).begin();
							 | 
						|
									typename _wsvector::const_iterator itpe = CU.col(ip).end();
							 | 
						|
									
							 | 
						|
									while (iti != itie && itp != itpe) {
							 | 
						|
									  if (iti->first < itp->first)
							 | 
						|
									    { U.row(iti->first).swap_indices(i, ip); ++iti; }
							 | 
						|
									  else if (iti->first > itp->first)
							 | 
						|
									    { U.row(itp->first).swap_indices(i,ip);++itp; }
							 | 
						|
									  else
							 | 
						|
									    { U.row(iti->first).swap_indices(i, ip); ++iti; ++itp; }
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									for( ; iti != itie; ++iti) U.row(iti->first).swap_indices(i, ip);
							 | 
						|
									for( ; itp != itpe; ++itp) U.row(itp->first).swap_indices(i, ip);
							 | 
						|
								
							 | 
						|
									CU.swap_col(i, ip);
							 | 
						|
									
							 | 
						|
									indperm.swap(i, ip);
							 | 
						|
									indperminv.swap(ipvt[i], ipvt[ip]);
							 | 
						|
									std::swap(ipvtinv[ipvt[i]], ipvtinv[ipvt[ip]]);
							 | 
						|
									std::swap(ipvt[i], ipvt[ip]);
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template<typename Matrix> 
							 | 
						|
								  void ilutp_precond<Matrix>::do_ilutp(const Matrix& A, col_major) {
							 | 
						|
								    do_ilutp(gmm::transposed(A), row_major());
							 | 
						|
								    invert = true;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void mult(const ilutp_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      gmm::copy(gmm::sub_vector(v1, P.indperm), v2);
							 | 
						|
								      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      gmm::copy(v1, P.temporary);
							 | 
						|
								      gmm::lower_tri_solve(P.L, P.temporary, true);
							 | 
						|
								      gmm::upper_tri_solve(P.U, P.temporary, false);
							 | 
						|
								      gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_mult(const ilutp_precond<Matrix>& P,const V1 &v1,V2 &v2) {
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      gmm::copy(v1, P.temporary);
							 | 
						|
								      gmm::lower_tri_solve(P.L, P.temporary, true);
							 | 
						|
								      gmm::upper_tri_solve(P.U, P.temporary, false);
							 | 
						|
								      gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      gmm::copy(gmm::sub_vector(v1, P.indperm), v2);
							 | 
						|
								      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void left_mult(const ilutp_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      gmm::copy(gmm::sub_vector(v1, P.indperm), v2);
							 | 
						|
								      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      copy(v1, v2);
							 | 
						|
								      gmm::lower_tri_solve(P.L, v2, true);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void right_mult(const ilutp_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      copy(v1, v2);
							 | 
						|
								      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      copy(v1, P.temporary);
							 | 
						|
								      gmm::upper_tri_solve(P.U, P.temporary, false);
							 | 
						|
								      gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_left_mult(const ilutp_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											    V2 &v2) {
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      copy(v1, P.temporary);
							 | 
						|
								      gmm::upper_tri_solve(P.U, P.temporary, false);
							 | 
						|
								      gmm::copy(gmm::sub_vector(P.temporary, P.indperminv), v2);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      copy(v1, v2);
							 | 
						|
								      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_right_mult(const ilutp_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											     V2 &v2) {
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      copy(v1, v2);
							 | 
						|
								      gmm::lower_tri_solve(P.L, v2, true);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      gmm::copy(gmm::sub_vector(v1, P.indperm), v2);
							 | 
						|
								      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif 
							 | 
						|
								
							 |