You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							286 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							286 lines
						
					
					
						
							11 KiB
						
					
					
				
								/* -*- c++ -*- (enables emacs c++ mode) */
							 | 
						|
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2003-2012 Yves Renard
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								 As a special exception, you  may use  this file  as it is a part of a free
							 | 
						|
								 software  library  without  restriction.  Specifically,  if   other  files
							 | 
						|
								 instantiate  templates  or  use macros or inline functions from this file,
							 | 
						|
								 or  you compile this  file  and  link  it  with other files  to produce an
							 | 
						|
								 executable, this file  does  not  by itself cause the resulting executable
							 | 
						|
								 to be covered  by the GNU Lesser General Public License.  This   exception
							 | 
						|
								 does not  however  invalidate  any  other  reasons why the executable file
							 | 
						|
								 might be covered by the GNU Lesser General Public License.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								
							 | 
						|
								// This file is a modified version of cholesky.h from ITL.
							 | 
						|
								// See http://osl.iu.edu/research/itl/
							 | 
						|
								// Following the corresponding Copyright notice.
							 | 
						|
								//===========================================================================
							 | 
						|
								//
							 | 
						|
								// Copyright (c) 1998-2001, University of Notre Dame. All rights reserved.
							 | 
						|
								// Redistribution and use in source and binary forms, with or without
							 | 
						|
								// modification, are permitted provided that the following conditions are met:
							 | 
						|
								//
							 | 
						|
								//    * Redistributions of source code must retain the above copyright
							 | 
						|
								//      notice, this list of conditions and the following disclaimer.
							 | 
						|
								//    * Redistributions in binary form must reproduce the above copyright
							 | 
						|
								//      notice, this list of conditions and the following disclaimer in the
							 | 
						|
								//      documentation and/or other materials provided with the distribution.
							 | 
						|
								//    * Neither the name of the University of Notre Dame nor the
							 | 
						|
								//      names of its contributors may be used to endorse or promote products
							 | 
						|
								//      derived from this software without specific prior written permission.
							 | 
						|
								//
							 | 
						|
								// THIS SOFTWARE  IS  PROVIDED  BY  THE TRUSTEES  OF  INDIANA UNIVERSITY  AND
							 | 
						|
								// CONTRIBUTORS  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,
							 | 
						|
								// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  FITNESS
							 | 
						|
								// FOR  A PARTICULAR PURPOSE ARE DISCLAIMED. IN  NO  EVENT SHALL THE TRUSTEES
							 | 
						|
								// OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						|
								// INCIDENTAL, SPECIAL, EXEMPLARY,  OR CONSEQUENTIAL DAMAGES (INCLUDING,  BUT
							 | 
						|
								// NOT  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						|
								// DATA,  OR PROFITS;  OR BUSINESS  INTERRUPTION)  HOWEVER  CAUSED AND ON ANY
							 | 
						|
								// THEORY  OF  LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY, OR TORT
							 | 
						|
								// (INCLUDING  NEGLIGENCE  OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						|
								// THIS  SOFTWARE,  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						|
								//
							 | 
						|
								//===========================================================================
							 | 
						|
								
							 | 
						|
								#ifndef GMM_PRECOND_ILDLT_H
							 | 
						|
								#define GMM_PRECOND_ILDLT_H
							 | 
						|
								
							 | 
						|
								/**@file gmm_precond_ildlt.h
							 | 
						|
								   @author Andrew Lumsdaine <lums@osl.iu.edu>
							 | 
						|
								   @author Lie-Quan Lee <llee@osl.iu.edu>
							 | 
						|
								   @author Yves Renard <yves.renard@insa-lyon.fr>
							 | 
						|
								   @date June 5, 2003.
							 | 
						|
								   @brief Incomplete Level 0 ILDLT Preconditioner.
							 | 
						|
								*/
							 | 
						|
								
							 | 
						|
								#include "gmm_precond.h"
							 | 
						|
								
							 | 
						|
								namespace gmm {
							 | 
						|
								
							 | 
						|
								  /** Incomplete Level 0 LDLT Preconditioner.
							 | 
						|
								      
							 | 
						|
								  For use with symmetric real or hermitian complex sparse matrices.
							 | 
						|
								
							 | 
						|
								  Notes: The idea under a concrete Preconditioner such as Incomplete
							 | 
						|
								  Cholesky is to create a Preconditioner object to use in iterative
							 | 
						|
								  methods.
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  Y. Renard : Transformed in LDLT for stability reason.
							 | 
						|
								  
							 | 
						|
								  U=LT is stored in csr format. D is stored on the diagonal of U.
							 | 
						|
								  */
							 | 
						|
								  template <typename Matrix>
							 | 
						|
								  class ildlt_precond {
							 | 
						|
								
							 | 
						|
								  public :
							 | 
						|
								    typedef typename linalg_traits<Matrix>::value_type value_type;
							 | 
						|
								    typedef typename number_traits<value_type>::magnitude_type magnitude_type;
							 | 
						|
								    typedef csr_matrix_ref<value_type *, size_type *, size_type *, 0> tm_type;
							 | 
						|
								
							 | 
						|
								    tm_type U;
							 | 
						|
								
							 | 
						|
								  protected :
							 | 
						|
								    std::vector<value_type> Tri_val;
							 | 
						|
								    std::vector<size_type> Tri_ind, Tri_ptr;
							 | 
						|
								 
							 | 
						|
								    template<typename M> void do_ildlt(const M& A, row_major);
							 | 
						|
								    void do_ildlt(const Matrix& A, col_major);
							 | 
						|
								
							 | 
						|
								  public:
							 | 
						|
								
							 | 
						|
								    size_type nrows(void) const { return mat_nrows(U); }
							 | 
						|
								    size_type ncols(void) const { return mat_ncols(U); }
							 | 
						|
								    value_type &D(size_type i) { return Tri_val[Tri_ptr[i]]; }
							 | 
						|
								    const value_type &D(size_type i) const { return Tri_val[Tri_ptr[i]]; }
							 | 
						|
								    ildlt_precond(void) {}
							 | 
						|
								    void build_with(const Matrix& A) {
							 | 
						|
								      Tri_ptr.resize(mat_nrows(A)+1);
							 | 
						|
								      do_ildlt(A, typename principal_orientation_type<typename
							 | 
						|
										  linalg_traits<Matrix>::sub_orientation>::potype());
							 | 
						|
								    }
							 | 
						|
								    ildlt_precond(const Matrix& A)  { build_with(A); }
							 | 
						|
								    size_type memsize() const { 
							 | 
						|
								      return sizeof(*this) + 
							 | 
						|
									Tri_val.size() * sizeof(value_type) + 
							 | 
						|
									(Tri_ind.size()+Tri_ptr.size()) * sizeof(size_type); 
							 | 
						|
								    }
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								  template <typename Matrix> template<typename M>
							 | 
						|
								  void ildlt_precond<Matrix>::do_ildlt(const M& A, row_major) {
							 | 
						|
								    typedef typename linalg_traits<Matrix>::storage_type store_type;
							 | 
						|
								    typedef value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								    
							 | 
						|
								    size_type Tri_loc = 0, n = mat_nrows(A), d, g, h, i, j, k;
							 | 
						|
								    if (n == 0) return;
							 | 
						|
								    T z, zz;
							 | 
						|
								    Tri_ptr[0] = 0;
							 | 
						|
								    R prec = default_tol(R());
							 | 
						|
								    R max_pivot = gmm::abs(A(0,0)) * prec;
							 | 
						|
								    
							 | 
						|
								    for (int count = 0; count < 2; ++count) {
							 | 
						|
								      if (count) { Tri_val.resize(Tri_loc); Tri_ind.resize(Tri_loc); }
							 | 
						|
								      for (Tri_loc = 0, i = 0; i < n; ++i) {
							 | 
						|
									typedef typename linalg_traits<M>::const_sub_row_type row_type;
							 | 
						|
									row_type row = mat_const_row(A, i);
							 | 
						|
								        typename linalg_traits<row_type>::const_iterator
							 | 
						|
									  it = vect_const_begin(row), ite = vect_const_end(row);
							 | 
						|
								
							 | 
						|
									if (count) { Tri_val[Tri_loc] = T(0); Tri_ind[Tri_loc] = i; }
							 | 
						|
									++Tri_loc; // diagonal element
							 | 
						|
								
							 | 
						|
									for (k = 0; it != ite; ++it, ++k) {
							 | 
						|
									  j = index_of_it(it, k, store_type());
							 | 
						|
									  if (i == j) {
							 | 
						|
									    if (count) Tri_val[Tri_loc-1] = *it; 
							 | 
						|
									  }
							 | 
						|
									  else if (j > i) {
							 | 
						|
									    if (count) { Tri_val[Tri_loc] = *it; Tri_ind[Tri_loc]=j; }
							 | 
						|
									    ++Tri_loc;
							 | 
						|
									  }
							 | 
						|
									}
							 | 
						|
									Tri_ptr[i+1] = Tri_loc;
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    if (A(0,0) == T(0)) {
							 | 
						|
								      Tri_val[Tri_ptr[0]] = T(1);
							 | 
						|
								      GMM_WARNING2("pivot 0 is too small");
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    for (k = 0; k < n; k++) {
							 | 
						|
								      d = Tri_ptr[k];
							 | 
						|
								      z = T(gmm::real(Tri_val[d])); Tri_val[d] = z;
							 | 
						|
								      if (gmm::abs(z) <= max_pivot) {
							 | 
						|
									Tri_val[d] = z = T(1);
							 | 
						|
									GMM_WARNING2("pivot " << k << " is too small [" << gmm::abs(z) << "]");
							 | 
						|
								      }
							 | 
						|
								      max_pivot = std::max(max_pivot, std::min(gmm::abs(z) * prec, R(1)));
							 | 
						|
								      
							 | 
						|
								      for (i = d + 1; i < Tri_ptr[k+1]; ++i) Tri_val[i] /= z;
							 | 
						|
								      for (i = d + 1; i < Tri_ptr[k+1]; ++i) {
							 | 
						|
									zz = gmm::conj(Tri_val[i] * z);
							 | 
						|
									h = Tri_ind[i];
							 | 
						|
									g = i;
							 | 
						|
									
							 | 
						|
									for (j = Tri_ptr[h] ; j < Tri_ptr[h+1]; ++j)
							 | 
						|
									  for ( ; g < Tri_ptr[k+1] && Tri_ind[g] <= Tri_ind[j]; ++g)
							 | 
						|
									    if (Tri_ind[g] == Tri_ind[j])
							 | 
						|
									      Tri_val[j] -= zz * Tri_val[g];
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    U = tm_type(&(Tri_val[0]), &(Tri_ind[0]), &(Tri_ptr[0]),
							 | 
						|
											n, mat_ncols(A));
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  template <typename Matrix>
							 | 
						|
								  void ildlt_precond<Matrix>::do_ildlt(const Matrix& A, col_major)
							 | 
						|
								  { do_ildlt(gmm::conjugated(A), row_major()); }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    gmm::copy(v1, v2);
							 | 
						|
								    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
							 | 
						|
								    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
							 | 
						|
								    gmm::upper_tri_solve(P.U, v2, true);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_mult(const ildlt_precond<Matrix>& P,const V1 &v1,V2 &v2)
							 | 
						|
								  { mult(P, v1, v2); }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void left_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
							 | 
						|
								    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void right_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2)
							 | 
						|
								  { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true);  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_left_mult(const ildlt_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											    V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    gmm::upper_tri_solve(P.U, v2, true);
							 | 
						|
								    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_right_mult(const ildlt_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											     V2 &v2)
							 | 
						|
								  { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  // for compatibility with old versions
							 | 
						|
								
							 | 
						|
								  template <typename Matrix>
							 | 
						|
								  struct cholesky_precond : public ildlt_precond<Matrix> {
							 | 
						|
								    cholesky_precond(const Matrix& A) : ildlt_precond<Matrix>(A) {}
							 | 
						|
								    cholesky_precond(void) {}
							 | 
						|
								  } IS_DEPRECATED;
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    gmm::copy(v1, v2);
							 | 
						|
								    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
							 | 
						|
								    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
							 | 
						|
								    gmm::upper_tri_solve(P.U, v2, true);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_mult(const cholesky_precond<Matrix>& P,const V1 &v1,V2 &v2)
							 | 
						|
								  { mult(P, v1, v2); }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void left_mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
							 | 
						|
								    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void right_mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2)
							 | 
						|
								  { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true);  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_left_mult(const cholesky_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											    V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    gmm::upper_tri_solve(P.U, v2, true);
							 | 
						|
								    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_right_mult(const cholesky_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											     V2 &v2)
							 | 
						|
								  { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }
							 | 
						|
								  
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif 
							 | 
						|
								
							 |