You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

218 lines
16 KiB

#include "storm/modelchecker/multiobjective/deterministicScheds/DeterministicSchedsObjectiveHelper.h"
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include "storm/modelchecker/csl/SparseMarkovAutomatonCslModelChecker.h"
#include "storm/modelchecker/propositional/SparsePropositionalModelChecker.h"
#include "storm/modelchecker/results/ExplicitQualitativeCheckResult.h"
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "storm/storage/BitVector.h"
#include "storm/utility/graph.h"
#include "storm/utility/FilteredRewardModel.h"
#include "storm/utility/vector.h"
#include "storm/logic/Formulas.h"
#include "storm/logic/CloneVisitor.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/exceptions/UnexpectedException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <typename ModelType>
DeterministicSchedsObjectiveHelper<ModelType>::DeterministicSchedsObjectiveHelper(ModelType const& model, storm::modelchecker::multiobjective::Objective<ValueType> const& objective) : model(model), objective(objective) {
// Intentionally left empty
}
template <typename ModelType>
storm::storage::BitVector evaluatePropositionalFormula(ModelType const& model, storm::logic::Formula const& formula) {
storm::modelchecker::SparsePropositionalModelChecker<ModelType> mc(model);
auto checkResult = mc.check(formula);
STORM_LOG_THROW(checkResult && checkResult->isExplicitQualitativeCheckResult(), storm::exceptions::UnexpectedException, "Unexpected type of check result for subformula " << formula << ".");
return checkResult->asExplicitQualitativeCheckResult().getTruthValuesVector();
}
template <typename ModelType>
std::map<uint64_t, typename ModelType::ValueType> const& DeterministicSchedsObjectiveHelper<ModelType>::getSchedulerIndependentStateValues() const {
if (!schedulerIndependentStateValues) {
auto const& formula = *objective.formula;
std::map<uint64_t, ValueType> result;
if (formula.isProbabilityOperatorFormula() && formula.getSubformula().isUntilFormula()) {
storm::storage::BitVector phiStates = evaluatePropositionalFormula(model, formula.getSubformula().asUntilFormula().getLeftSubformula());
storm::storage::BitVector psiStates = evaluatePropositionalFormula(model, formula.getSubformula().asUntilFormula().getRightSubformula());
auto backwardTransitions = model.getBackwardTransitions();
{
storm::storage::BitVector prob1States = storm::utility::graph::performProb1A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), backwardTransitions, phiStates, psiStates);
for (auto const& prob1State : prob1States) {
result[prob1State] = storm::utility::one<ValueType>();
}
}
{
storm::storage::BitVector prob0States = storm::utility::graph::performProb0A(backwardTransitions, phiStates, psiStates);
for (auto const& prob0State : prob0States) {
result[prob0State] = storm::utility::zero<ValueType>();
}
}
} else if (formula.getSubformula().isEventuallyFormula() && (formula.isRewardOperatorFormula() || formula.isTimeOperatorFormula())) {
storm::storage::BitVector rew0States = evaluatePropositionalFormula(model, formula.getSubformula().asEventuallyFormula().getSubformula());
if (formula.isRewardOperatorFormula()) {
auto const& baseRewardModel = formula.asRewardOperatorFormula().hasRewardModelName() ? model.getRewardModel(formula.asRewardOperatorFormula().getRewardModelName()) : model.getUniqueRewardModel();
auto rewardModel = storm::utility::createFilteredRewardModel(baseRewardModel, model.isDiscreteTimeModel(), formula.getSubformula().asEventuallyFormula());
storm::storage::BitVector statesWithoutReward = rewardModel.get().getStatesWithZeroReward(model.getTransitionMatrix());
rew0States = storm::utility::graph::performProb1A(model.getTransitionMatrix(), model.getNondeterministicChoiceIndices(), model.getBackwardTransitions(), statesWithoutReward, rew0States);
}
for (auto const& rew0State : rew0States) {
result[rew0State] = storm::utility::zero<ValueType>();
}
} else if (formula.isRewardOperatorFormula() && formula.getSubformula().isTotalRewardFormula()) {
auto const& baseRewardModel = formula.asRewardOperatorFormula().hasRewardModelName() ? model.getRewardModel(formula.asRewardOperatorFormula().getRewardModelName()) : model.getUniqueRewardModel();
auto rewardModel = storm::utility::createFilteredRewardModel(baseRewardModel, model.isDiscreteTimeModel(), formula.getSubformula().asTotalRewardFormula());
storm::storage::BitVector statesWithoutReward = rewardModel.get().getStatesWithZeroReward(model.getTransitionMatrix());
storm::storage::BitVector rew0States = storm::utility::graph::performProbGreater0E(model.getBackwardTransitions(), statesWithoutReward, ~statesWithoutReward);
rew0States.complement();
for (auto const& rew0State : rew0States) {
result[rew0State] = storm::utility::zero<ValueType>();
}
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "The given formula " << formula << " is not supported.");
}
schedulerIndependentStateValues = std::move(result);
}
return schedulerIndependentStateValues.get();
}
template <typename ModelType>
std::map<uint64_t, typename ModelType::ValueType> const& DeterministicSchedsObjectiveHelper<ModelType>::getChoiceValueOffsets() const {
if (!choiceValueOffsets) {
auto const& formula = *objective.formula;
auto const& subformula = formula.getSubformula();
std::map<uint64_t, ValueType> result;
if (formula.isProbabilityOperatorFormula() && subformula.isUntilFormula()) {
// In this case, there is nothing to be done.
} else if (formula.isRewardOperatorFormula() && (subformula.isTotalRewardFormula() || subformula.isEventuallyFormula())) {
auto const& baseRewardModel = formula.asRewardOperatorFormula().hasRewardModelName() ? model.getRewardModel(formula.asRewardOperatorFormula().getRewardModelName()) : model.getUniqueRewardModel();
auto rewardModel = subformula.isEventuallyFormula() ? storm::utility::createFilteredRewardModel(baseRewardModel, model.isDiscreteTimeModel(), subformula.asEventuallyFormula()) : storm::utility::createFilteredRewardModel(baseRewardModel, model.isDiscreteTimeModel(), subformula.asTotalRewardFormula());
std::vector<ValueType> choiceBasedRewards = rewardModel.get().getTotalRewardVector(model.getTransitionMatrix());
// Set entries for all non-zero reward choices at states whose value is not already known.
// This relies on the fact that for goal states in reachability reward formulas, getSchedulerIndependentStateValues()[state] is set to zero.
auto const& rowGroupIndices = model.getTransitionMatrix().getRowGroupIndices();
auto const& stateValues = getSchedulerIndependentStateValues();
for (uint64_t state = 0; state < model.getNumberOfStates(); ++state) {
if (stateValues.find(state) == stateValues.end()) {
for (uint64_t choice = rowGroupIndices[state]; choice < rowGroupIndices[state + 1]; ++choice) {
if (!storm::utility::isZero(choiceBasedRewards[choice])) {
result[choice] = choiceBasedRewards[choice];
}
}
}
}
} else if (formula.isTimeOperatorFormula() && subformula.isEventuallyFormula()) {
auto const& rowGroupIndices = model.getTransitionMatrix().getRowGroupIndices();
auto const& stateValues = getSchedulerIndependentStateValues();
std::vector<ValueType> const* rates = nullptr;
storm::storage::BitVector const* ms = nullptr;
if (model.isOfType(storm::models::ModelType::MarkovAutomaton)) {
auto ma = model.template as<storm::models::sparse::MarkovAutomaton<ValueType>>();
rates = &ma->getExitRates();
ms = &ma->getMarkovianStates();
}
if (model.isOfType(storm::models::ModelType::Mdp)) {
// Set all choice offsets to one, except for the ones at states in scheduerIndependentStateValues.
for (uint64_t state = 0; state < model.getNumberOfStates(); ++state) {
if (stateValues.find(state) == stateValues.end()) {
ValueType value = storm::utility::one<ValueType>();
if (rates) {
if (ms->get(state)) {
value /= (*rates)[state];
} else {
// Nothing to be done for probabilistic states
continue;
}
}
for (uint64_t choice = rowGroupIndices[state]; choice < rowGroupIndices[state + 1]; ++choice) {
result[choice] = value;
}
}
}
}
} else {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "The given formula " << formula << " is not supported.");
}
choiceValueOffsets = std::move(result);
}
return choiceValueOffsets.get();
}
template <typename ValueType>
std::vector<ValueType> evaluateOperatorFormula(Environment const& env, storm::models::sparse::Mdp<ValueType> const& model, storm::logic::Formula const& formula) {
storm::modelchecker::SparseMdpPrctlModelChecker<storm::models::sparse::Mdp<ValueType>> mc(model);
storm::modelchecker::CheckTask<storm::logic::Formula, ValueType> task(formula, false);
auto checkResult = mc.check(env, task);
STORM_LOG_THROW(checkResult && checkResult->isExplicitQuantitativeCheckResult(), storm::exceptions::UnexpectedException, "Unexpected type of check result for subformula " << formula << ".");
return checkResult->template asExplicitQuantitativeCheckResult<ValueType>().getValueVector();
}
template <typename ValueType>
std::vector<ValueType> evaluateOperatorFormula(Environment const& env, storm::models::sparse::MarkovAutomaton<ValueType> const& model, storm::logic::Formula const& formula) {
storm::modelchecker::SparseMarkovAutomatonCslModelChecker<storm::models::sparse::MarkovAutomaton<ValueType>> mc(model);
storm::modelchecker::CheckTask<storm::logic::Formula, ValueType> task(formula, false);
auto checkResult = mc.check(env, task);
STORM_LOG_THROW(checkResult && checkResult->isExplicitQuantitativeCheckResult(), storm::exceptions::UnexpectedException, "Unexpected type of check result for subformula " << formula << ".");
return checkResult->template asExplicitQuantitativeCheckResult<ValueType>().getValueVector();
}
template <typename ModelType>
std::vector<typename ModelType::ValueType> computeValueBounds(Environment const& env, bool lowerValueBounds, ModelType const& model, storm::logic::Formula const& formula) {
// Change the optimization direction in the formula.
auto newFormula = storm::logic::CloneVisitor().clone(formula);
newFormula->asOperatorFormula().setOptimalityType(lowerValueBounds ? storm::solver::OptimizationDirection::Minimize : storm::solver::OptimizationDirection::Maximize);
// Create an environment where sound results are enforced
storm::Environment soundEnv(env);
soundEnv.solver().setForceSoundness(true);
auto result = evaluateOperatorFormula(soundEnv, model, *newFormula);
auto eps = storm::utility::convertNumber<typename ModelType::ValueType>(soundEnv.solver().minMax().getPrecision());
// Add/substract eps to all entries to make up for precision errors
if (lowerValueBounds) {
eps = -eps;
}
for (auto& v : result) {
v += eps;
}
return result;
}
template <typename ModelType>
typename ModelType::ValueType const& DeterministicSchedsObjectiveHelper<ModelType>::getUpperValueBoundAtState(Environment const& env, uint64_t state) const{
//return objective.upperResultBound.get();
// TODO: try this.
if (!upperResultBounds) {
upperResultBounds = computeValueBounds(env, false, model, *objective.formula);
STORM_LOG_THROW(!storm::utility::vector::hasInfinityEntry(upperResultBounds.get()), storm::exceptions::NotSupportedException, "The upper bound for objective " << *objective.originalFormula << " is infinity at some state. This is not supported.");
}
return upperResultBounds.get()[state];
}
template <typename ModelType>
typename ModelType::ValueType const& DeterministicSchedsObjectiveHelper<ModelType>::getLowerValueBoundAtState(Environment const& env, uint64_t state) const{
// return objective.lowerResultBound.get();
//TODO: try this.
if (!lowerResultBounds) {
lowerResultBounds = computeValueBounds(env, true, model, *objective.formula);
STORM_LOG_THROW(!storm::utility::vector::hasInfinityEntry(lowerResultBounds.get()), storm::exceptions::NotSupportedException, "The lower bound for objective " << *objective.originalFormula << " is infinity at some state. This is not supported.");
}
return lowerResultBounds.get()[state];
}
template class DeterministicSchedsObjectiveHelper<storm::models::sparse::Mdp<double>>;
template class DeterministicSchedsObjectiveHelper<storm::models::sparse::Mdp<storm::RationalNumber>>;
template class DeterministicSchedsObjectiveHelper<storm::models::sparse::MarkovAutomaton<double>>;
template class DeterministicSchedsObjectiveHelper<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>;
}
}
}