You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							240 lines
						
					
					
						
							7.1 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							240 lines
						
					
					
						
							7.1 KiB
						
					
					
				| // This file is part of Eigen, a lightweight C++ template library | |
| // for linear algebra. | |
| // | |
| // Copyright (C) 2010-2011 Hauke Heibel <heibel@gmail.com> | |
| // | |
| // This Source Code Form is subject to the terms of the Mozilla | |
| // Public License v. 2.0. If a copy of the MPL was not distributed | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
|  | |
| #include "main.h" | |
|  | |
| #include <unsupported/Eigen/Splines> | |
|  | |
| // lets do some explicit instantiations and thus | |
| // force the compilation of all spline functions... | |
| template class Spline<double, 2, Dynamic>; | |
| template class Spline<double, 3, Dynamic>; | |
| 
 | |
| template class Spline<double, 2, 2>; | |
| template class Spline<double, 2, 3>; | |
| template class Spline<double, 2, 4>; | |
| template class Spline<double, 2, 5>; | |
| 
 | |
| template class Spline<float, 2, Dynamic>; | |
| template class Spline<float, 3, Dynamic>; | |
| 
 | |
| template class Spline<float, 3, 2>; | |
| template class Spline<float, 3, 3>; | |
| template class Spline<float, 3, 4>; | |
| template class Spline<float, 3, 5>; | |
| 
 | |
| Spline<double, 2, Dynamic> closed_spline2d() | |
| { | |
|   RowVectorXd knots(12); | |
|   knots << 0, | |
|     0, | |
|     0, | |
|     0, | |
|     0.867193179093898, | |
|     1.660330955342408, | |
|     2.605084834823134, | |
|     3.484154586374428, | |
|     4.252699478956276, | |
|     4.252699478956276, | |
|     4.252699478956276, | |
|     4.252699478956276; | |
| 
 | |
|   MatrixXd ctrls(8,2); | |
|   ctrls << -0.370967741935484,   0.236842105263158, | |
|     -0.231401860693277,   0.442245185027632, | |
|     0.344361228532831,   0.773369994120753, | |
|     0.828990216203802,   0.106550882647595, | |
|     0.407270163678382,  -1.043452922172848, | |
|     -0.488467813584053,  -0.390098582530090, | |
|     -0.494657189446427,   0.054804824897884, | |
|     -0.370967741935484,   0.236842105263158; | |
|   ctrls.transposeInPlace(); | |
| 
 | |
|   return Spline<double, 2, Dynamic>(knots, ctrls); | |
| } | |
| 
 | |
| /* create a reference spline */ | |
| Spline<double, 3, Dynamic> spline3d() | |
| { | |
|   RowVectorXd knots(11); | |
|   knots << 0, | |
|     0, | |
|     0, | |
|     0.118997681558377, | |
|     0.162611735194631, | |
|     0.498364051982143, | |
|     0.655098003973841, | |
|     0.679702676853675, | |
|     1.000000000000000, | |
|     1.000000000000000, | |
|     1.000000000000000; | |
| 
 | |
|   MatrixXd ctrls(8,3); | |
|   ctrls <<    0.959743958516081,   0.340385726666133,   0.585267750979777, | |
|     0.223811939491137,   0.751267059305653,   0.255095115459269, | |
|     0.505957051665142,   0.699076722656686,   0.890903252535799, | |
|     0.959291425205444,   0.547215529963803,   0.138624442828679, | |
|     0.149294005559057,   0.257508254123736,   0.840717255983663, | |
|     0.254282178971531,   0.814284826068816,   0.243524968724989, | |
|     0.929263623187228,   0.349983765984809,   0.196595250431208, | |
|     0.251083857976031,   0.616044676146639,   0.473288848902729; | |
|   ctrls.transposeInPlace(); | |
| 
 | |
|   return Spline<double, 3, Dynamic>(knots, ctrls); | |
| } | |
| 
 | |
| /* compares evaluations against known results */ | |
| void eval_spline3d() | |
| { | |
|   Spline3d spline = spline3d(); | |
| 
 | |
|   RowVectorXd u(10); | |
|   u << 0.351659507062997, | |
|     0.830828627896291, | |
|     0.585264091152724, | |
|     0.549723608291140, | |
|     0.917193663829810, | |
|     0.285839018820374, | |
|     0.757200229110721, | |
|     0.753729094278495, | |
|     0.380445846975357, | |
|     0.567821640725221; | |
| 
 | |
|   MatrixXd pts(10,3); | |
|   pts << 0.707620811535916,   0.510258911240815,   0.417485437023409, | |
|     0.603422256426978,   0.529498282727551,   0.270351549348981, | |
|     0.228364197569334,   0.423745615677815,   0.637687289287490, | |
|     0.275556796335168,   0.350856706427970,   0.684295784598905, | |
|     0.514519311047655,   0.525077224890754,   0.351628308305896, | |
|     0.724152914315666,   0.574461155457304,   0.469860285484058, | |
|     0.529365063753288,   0.613328702656816,   0.237837040141739, | |
|     0.522469395136878,   0.619099658652895,   0.237139665242069, | |
|     0.677357023849552,   0.480655768435853,   0.422227610314397, | |
|     0.247046593173758,   0.380604672404750,   0.670065791405019; | |
|   pts.transposeInPlace(); | |
| 
 | |
|   for (int i=0; i<u.size(); ++i) | |
|   { | |
|     Vector3d pt = spline(u(i)); | |
|     VERIFY( (pt - pts.col(i)).norm() < 1e-14 ); | |
|   } | |
| } | |
| 
 | |
| /* compares evaluations on corner cases */ | |
| void eval_spline3d_onbrks() | |
| { | |
|   Spline3d spline = spline3d(); | |
| 
 | |
|   RowVectorXd u = spline.knots(); | |
| 
 | |
|   MatrixXd pts(11,3); | |
|   pts <<    0.959743958516081,   0.340385726666133,   0.585267750979777, | |
|     0.959743958516081,   0.340385726666133,   0.585267750979777, | |
|     0.959743958516081,   0.340385726666133,   0.585267750979777, | |
|     0.430282980289940,   0.713074680056118,   0.720373307943349, | |
|     0.558074875553060,   0.681617921034459,   0.804417124839942, | |
|     0.407076008291750,   0.349707710518163,   0.617275937419545, | |
|     0.240037008286602,   0.738739390398014,   0.324554153129411, | |
|     0.302434111480572,   0.781162443963899,   0.240177089094644, | |
|     0.251083857976031,   0.616044676146639,   0.473288848902729, | |
|     0.251083857976031,   0.616044676146639,   0.473288848902729, | |
|     0.251083857976031,   0.616044676146639,   0.473288848902729; | |
|   pts.transposeInPlace(); | |
| 
 | |
|   for (int i=0; i<u.size(); ++i) | |
|   { | |
|     Vector3d pt = spline(u(i)); | |
|     VERIFY( (pt - pts.col(i)).norm() < 1e-14 ); | |
|   } | |
| } | |
| 
 | |
| void eval_closed_spline2d() | |
| { | |
|   Spline2d spline = closed_spline2d(); | |
| 
 | |
|   RowVectorXd u(12); | |
|   u << 0, | |
|     0.332457030395796, | |
|     0.356467130532952, | |
|     0.453562180176215, | |
|     0.648017921874804, | |
|     0.973770235555003, | |
|     1.882577647219307, | |
|     2.289408593930498, | |
|     3.511951429883045, | |
|     3.884149321369450, | |
|     4.236261590369414, | |
|     4.252699478956276; | |
| 
 | |
|   MatrixXd pts(12,2); | |
|   pts << -0.370967741935484,   0.236842105263158, | |
|     -0.152576775123250,   0.448975001279334, | |
|     -0.133417538277668,   0.461615613865667, | |
|     -0.053199060826740,   0.507630360006299, | |
|     0.114249591147281,   0.570414135097409, | |
|     0.377810316891987,   0.560497102875315, | |
|     0.665052120135908,  -0.157557441109611, | |
|     0.516006487053228,  -0.559763292174825, | |
|     -0.379486035348887,  -0.331959640488223, | |
|     -0.462034726249078,  -0.039105670080824, | |
|     -0.378730600917982,   0.225127015099919, | |
|     -0.370967741935484,   0.236842105263158; | |
|   pts.transposeInPlace(); | |
| 
 | |
|   for (int i=0; i<u.size(); ++i) | |
|   { | |
|     Vector2d pt = spline(u(i)); | |
|     VERIFY( (pt - pts.col(i)).norm() < 1e-14 ); | |
|   } | |
| } | |
| 
 | |
| void check_global_interpolation2d() | |
| { | |
|   typedef Spline2d::PointType PointType; | |
|   typedef Spline2d::KnotVectorType KnotVectorType; | |
|   typedef Spline2d::ControlPointVectorType ControlPointVectorType; | |
| 
 | |
|   ControlPointVectorType points = ControlPointVectorType::Random(2,100); | |
| 
 | |
|   KnotVectorType chord_lengths; // knot parameters | |
|   Eigen::ChordLengths(points, chord_lengths); | |
| 
 | |
|   // interpolation without knot parameters | |
|   { | |
|     const Spline2d spline = SplineFitting<Spline2d>::Interpolate(points,3);   | |
| 
 | |
|     for (Eigen::DenseIndex i=0; i<points.cols(); ++i) | |
|     { | |
|       PointType pt = spline( chord_lengths(i) ); | |
|       PointType ref = points.col(i); | |
|       VERIFY( (pt - ref).matrix().norm() < 1e-14 ); | |
|     } | |
|   } | |
| 
 | |
|   // interpolation with given knot parameters | |
|   { | |
|     const Spline2d spline = SplineFitting<Spline2d>::Interpolate(points,3,chord_lengths);   | |
| 
 | |
|     for (Eigen::DenseIndex i=0; i<points.cols(); ++i) | |
|     { | |
|       PointType pt = spline( chord_lengths(i) ); | |
|       PointType ref = points.col(i); | |
|       VERIFY( (pt - ref).matrix().norm() < 1e-14 ); | |
|     } | |
|   } | |
| } | |
| 
 | |
| 
 | |
| void test_splines() | |
| { | |
|   CALL_SUBTEST( eval_spline3d() ); | |
|   CALL_SUBTEST( eval_spline3d_onbrks() ); | |
|   CALL_SUBTEST( eval_closed_spline2d() ); | |
|   CALL_SUBTEST( check_global_interpolation2d() ); | |
| }
 |