You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							154 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							154 lines
						
					
					
						
							4.2 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#ifndef EIGEN_TESTSPARSE_H
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								
							 | 
						|
								#if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC
							 | 
						|
								#include <tr1/unordered_map>
							 | 
						|
								#define EIGEN_UNORDERED_MAP_SUPPORT
							 | 
						|
								namespace std {
							 | 
						|
								  using std::tr1::unordered_map;
							 | 
						|
								}
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#ifdef EIGEN_GOOGLEHASH_SUPPORT
							 | 
						|
								  #include <google/sparse_hash_map>
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								#include <Eigen/Cholesky>
							 | 
						|
								#include <Eigen/LU>
							 | 
						|
								#include <Eigen/Sparse>
							 | 
						|
								
							 | 
						|
								enum {
							 | 
						|
								  ForceNonZeroDiag = 1,
							 | 
						|
								  MakeLowerTriangular = 2,
							 | 
						|
								  MakeUpperTriangular = 4,
							 | 
						|
								  ForceRealDiag = 8
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								/* Initializes both a sparse and dense matrix with same random values,
							 | 
						|
								 * and a ratio of \a density non zero entries.
							 | 
						|
								 * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular
							 | 
						|
								 *        allowing to control the shape of the matrix.
							 | 
						|
								 * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero,
							 | 
						|
								 *        and zero coefficients respectively.
							 | 
						|
								 */
							 | 
						|
								template<typename Scalar> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,Dynamic,Dynamic>& refMat,
							 | 
						|
								           SparseMatrix<Scalar>& sparseMat,
							 | 
						|
								           int flags = 0,
							 | 
						|
								           std::vector<Vector2i>* zeroCoords = 0,
							 | 
						|
								           std::vector<Vector2i>* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  sparseMat.startFill(int(refMat.rows()*refMat.cols()*density));
							 | 
						|
								  for(int j=0; j<refMat.cols(); j++)
							 | 
						|
								  {
							 | 
						|
								    for(int i=0; i<refMat.rows(); i++)
							 | 
						|
								    {
							 | 
						|
								      Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
							 | 
						|
								      if ((flags&ForceNonZeroDiag) && (i==j))
							 | 
						|
								      {
							 | 
						|
								        v = ei_random<Scalar>()*Scalar(3.);
							 | 
						|
								        v = v*v + Scalar(5.);
							 | 
						|
								      }
							 | 
						|
								      if ((flags & MakeLowerTriangular) && j>i)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								      else if ((flags & MakeUpperTriangular) && j<i)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								      
							 | 
						|
								      if ((flags&ForceRealDiag) && (i==j))
							 | 
						|
								        v = ei_real(v);
							 | 
						|
								        
							 | 
						|
								      if (v!=Scalar(0))
							 | 
						|
								      {
							 | 
						|
								        sparseMat.fill(i,j) = v;
							 | 
						|
								        if (nonzeroCoords)
							 | 
						|
								          nonzeroCoords->push_back(Vector2i(i,j));
							 | 
						|
								      }
							 | 
						|
								      else if (zeroCoords)
							 | 
						|
								      {
							 | 
						|
								        zeroCoords->push_back(Vector2i(i,j));
							 | 
						|
								      }
							 | 
						|
								      refMat(i,j) = v;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  sparseMat.endFill();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,Dynamic,Dynamic>& refMat,
							 | 
						|
								           DynamicSparseMatrix<Scalar>& sparseMat,
							 | 
						|
								           int flags = 0,
							 | 
						|
								           std::vector<Vector2i>* zeroCoords = 0,
							 | 
						|
								           std::vector<Vector2i>* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  sparseMat.startFill(int(refMat.rows()*refMat.cols()*density));
							 | 
						|
								  for(int j=0; j<refMat.cols(); j++)
							 | 
						|
								  {
							 | 
						|
								    for(int i=0; i<refMat.rows(); i++)
							 | 
						|
								    {
							 | 
						|
								      Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
							 | 
						|
								      if ((flags&ForceNonZeroDiag) && (i==j))
							 | 
						|
								      {
							 | 
						|
								        v = ei_random<Scalar>()*Scalar(3.);
							 | 
						|
								        v = v*v + Scalar(5.);
							 | 
						|
								      }
							 | 
						|
								      if ((flags & MakeLowerTriangular) && j>i)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								      else if ((flags & MakeUpperTriangular) && j<i)
							 | 
						|
								        v = Scalar(0);
							 | 
						|
								      
							 | 
						|
								      if ((flags&ForceRealDiag) && (i==j))
							 | 
						|
								        v = ei_real(v);
							 | 
						|
								        
							 | 
						|
								      if (v!=Scalar(0))
							 | 
						|
								      {
							 | 
						|
								        sparseMat.fill(i,j) = v;
							 | 
						|
								        if (nonzeroCoords)
							 | 
						|
								          nonzeroCoords->push_back(Vector2i(i,j));
							 | 
						|
								      }
							 | 
						|
								      else if (zeroCoords)
							 | 
						|
								      {
							 | 
						|
								        zeroCoords->push_back(Vector2i(i,j));
							 | 
						|
								      }
							 | 
						|
								      refMat(i,j) = v;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  sparseMat.endFill();
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename Scalar> void
							 | 
						|
								initSparse(double density,
							 | 
						|
								           Matrix<Scalar,Dynamic,1>& refVec,
							 | 
						|
								           SparseVector<Scalar>& sparseVec,
							 | 
						|
								           std::vector<int>* zeroCoords = 0,
							 | 
						|
								           std::vector<int>* nonzeroCoords = 0)
							 | 
						|
								{
							 | 
						|
								  sparseVec.reserve(int(refVec.size()*density));
							 | 
						|
								  sparseVec.setZero();
							 | 
						|
								  for(int i=0; i<refVec.size(); i++)
							 | 
						|
								  {
							 | 
						|
								    Scalar v = (ei_random<double>(0,1) < density) ? ei_random<Scalar>() : Scalar(0);
							 | 
						|
								    if (v!=Scalar(0))
							 | 
						|
								    {
							 | 
						|
								      sparseVec.fill(i) = v;
							 | 
						|
								      if (nonzeroCoords)
							 | 
						|
								        nonzeroCoords->push_back(i);
							 | 
						|
								    }
							 | 
						|
								    else if (zeroCoords)
							 | 
						|
								        zeroCoords->push_back(i);
							 | 
						|
								    refVec[i] = v;
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif // EIGEN_TESTSPARSE_H
							 |