You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							317 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							317 lines
						
					
					
						
							10 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "sparse.h"
							 | 
						|
								
							 | 
						|
								template<typename SetterType,typename DenseType, typename Scalar, int Options>
							 | 
						|
								bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
							 | 
						|
								{
							 | 
						|
								  typedef SparseMatrix<Scalar,Options> SparseType;
							 | 
						|
								  {
							 | 
						|
								    sm.setZero();
							 | 
						|
								    SetterType w(sm);
							 | 
						|
								    std::vector<Vector2i> remaining = nonzeroCoords;
							 | 
						|
								    while(!remaining.empty())
							 | 
						|
								    {
							 | 
						|
								      int i = ei_random<int>(0,remaining.size()-1);
							 | 
						|
								      w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
							 | 
						|
								      remaining[i] = remaining.back();
							 | 
						|
								      remaining.pop_back();
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  return sm.isApprox(ref);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename SetterType,typename DenseType, typename T>
							 | 
						|
								bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords)
							 | 
						|
								{
							 | 
						|
								  sm.setZero();
							 | 
						|
								  std::vector<Vector2i> remaining = nonzeroCoords;
							 | 
						|
								  while(!remaining.empty())
							 | 
						|
								  {
							 | 
						|
								    int i = ei_random<int>(0,remaining.size()-1);
							 | 
						|
								    sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y());
							 | 
						|
								    remaining[i] = remaining.back();
							 | 
						|
								    remaining.pop_back();
							 | 
						|
								  }
							 | 
						|
								  return sm.isApprox(ref);
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
							 | 
						|
								{
							 | 
						|
								  const int rows = ref.rows();
							 | 
						|
								  const int cols = ref.cols();
							 | 
						|
								  typedef typename SparseMatrixType::Scalar Scalar;
							 | 
						|
								  enum { Flags = SparseMatrixType::Flags };
							 | 
						|
								  
							 | 
						|
								  double density = std::max(8./(rows*cols), 0.01);
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<Scalar,Dynamic,1> DenseVector;
							 | 
						|
								  Scalar eps = 1e-6;
							 | 
						|
								
							 | 
						|
								  SparseMatrixType m(rows, cols);
							 | 
						|
								  DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
							 | 
						|
								  DenseVector vec1 = DenseVector::Random(rows);
							 | 
						|
								  Scalar s1 = ei_random<Scalar>();
							 | 
						|
								
							 | 
						|
								  std::vector<Vector2i> zeroCoords;
							 | 
						|
								  std::vector<Vector2i> nonzeroCoords;
							 | 
						|
								  initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
							 | 
						|
								  
							 | 
						|
								  if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
							 | 
						|
								    return;
							 | 
						|
								
							 | 
						|
								  // test coeff and coeffRef
							 | 
						|
								  for (int i=0; i<(int)zeroCoords.size(); ++i)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
							 | 
						|
								    if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret)
							 | 
						|
								      VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
							 | 
						|
								  }
							 | 
						|
								  VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								  m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
							 | 
						|
								  refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								  /*
							 | 
						|
								  // test InnerIterators and Block expressions
							 | 
						|
								  for (int t=0; t<10; ++t)
							 | 
						|
								  {
							 | 
						|
								    int j = ei_random<int>(0,cols-1);
							 | 
						|
								    int i = ei_random<int>(0,rows-1);
							 | 
						|
								    int w = ei_random<int>(1,cols-j-1);
							 | 
						|
								    int h = ei_random<int>(1,rows-i-1);
							 | 
						|
								
							 | 
						|
								//     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
							 | 
						|
								    for(int c=0; c<w; c++)
							 | 
						|
								    {
							 | 
						|
								      VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
							 | 
						|
								      for(int r=0; r<h; r++)
							 | 
						|
								      {
							 | 
						|
								//         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								//     for(int r=0; r<h; r++)
							 | 
						|
								//     {
							 | 
						|
								//       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
							 | 
						|
								//       for(int c=0; c<w; c++)
							 | 
						|
								//       {
							 | 
						|
								//         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
							 | 
						|
								//       }
							 | 
						|
								//     }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  for(int c=0; c<cols; c++)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
							 | 
						|
								    VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  for(int r=0; r<rows; r++)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
							 | 
						|
								    VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
							 | 
						|
								  }
							 | 
						|
								  */
							 | 
						|
								
							 | 
						|
								  // test SparseSetters
							 | 
						|
								  // coherent setter
							 | 
						|
								  // TODO extend the MatrixSetter
							 | 
						|
								//   {
							 | 
						|
								//     m.setZero();
							 | 
						|
								//     VERIFY_IS_NOT_APPROX(m, refMat);
							 | 
						|
								//     SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
							 | 
						|
								//     for (int i=0; i<nonzeroCoords.size(); ++i)
							 | 
						|
								//     {
							 | 
						|
								//       w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
							 | 
						|
								//     }
							 | 
						|
								//   }
							 | 
						|
								//   VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								  // random setter
							 | 
						|
								//   {
							 | 
						|
								//     m.setZero();
							 | 
						|
								//     VERIFY_IS_NOT_APPROX(m, refMat);
							 | 
						|
								//     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
							 | 
						|
								//     std::vector<Vector2i> remaining = nonzeroCoords;
							 | 
						|
								//     while(!remaining.empty())
							 | 
						|
								//     {
							 | 
						|
								//       int i = ei_random<int>(0,remaining.size()-1);
							 | 
						|
								//       w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
							 | 
						|
								//       remaining[i] = remaining.back();
							 | 
						|
								//       remaining.pop_back();
							 | 
						|
								//     }
							 | 
						|
								//   }
							 | 
						|
								//   VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) ));
							 | 
						|
								    #ifdef EIGEN_UNORDERED_MAP_SUPPORT
							 | 
						|
								    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) ));
							 | 
						|
								    #endif
							 | 
						|
								    #ifdef _DENSE_HASH_MAP_H_
							 | 
						|
								    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) ));
							 | 
						|
								    #endif
							 | 
						|
								    #ifdef _SPARSE_HASH_MAP_H_
							 | 
						|
								    VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) ));
							 | 
						|
								    #endif
							 | 
						|
								
							 | 
						|
								    // test fillrand
							 | 
						|
								    {
							 | 
						|
								      DenseMatrix m1(rows,cols);
							 | 
						|
								      m1.setZero();
							 | 
						|
								      SparseMatrixType m2(rows,cols);
							 | 
						|
								      m2.startFill();
							 | 
						|
								      for (int j=0; j<cols; ++j)
							 | 
						|
								      {
							 | 
						|
								        for (int k=0; k<rows/2; ++k)
							 | 
						|
								        {
							 | 
						|
								          int i = ei_random<int>(0,rows-1);
							 | 
						|
								          if (m1.coeff(i,j)==Scalar(0))
							 | 
						|
								            m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>();
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								      m2.endFill();
							 | 
						|
								      VERIFY_IS_APPROX(m2,m1);
							 | 
						|
								    }
							 | 
						|
								  
							 | 
						|
								  // test RandomSetter
							 | 
						|
								  /*{
							 | 
						|
								    SparseMatrixType m1(rows,cols), m2(rows,cols);
							 | 
						|
								    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refM1, m1);
							 | 
						|
								    {
							 | 
						|
								      Eigen::RandomSetter<SparseMatrixType > setter(m2);
							 | 
						|
								      for (int j=0; j<m1.outerSize(); ++j)
							 | 
						|
								        for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
							 | 
						|
								          setter(i.index(), j) = i.value();
							 | 
						|
								    }
							 | 
						|
								    VERIFY_IS_APPROX(m1, m2);
							 | 
						|
								  }*/
							 | 
						|
								//   std::cerr << m.transpose() << "\n\n"  << refMat.transpose() << "\n\n";
							 | 
						|
								//   VERIFY_IS_APPROX(m, refMat);
							 | 
						|
								
							 | 
						|
								  // test basic computations
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m1(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    SparseMatrixType m3(rows, rows);
							 | 
						|
								    SparseMatrixType m4(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refM1, m1);
							 | 
						|
								    initSparse<Scalar>(density, refM2, m2);
							 | 
						|
								    initSparse<Scalar>(density, refM3, m3);
							 | 
						|
								    initSparse<Scalar>(density, refM4, m4);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1+m2, refM1+refM2);
							 | 
						|
								    VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2));
							 | 
						|
								    VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
							 | 
						|
								    VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
							 | 
						|
								    
							 | 
						|
								    VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
							 | 
						|
								    VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
							 | 
						|
								    
							 | 
						|
								    VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0)));
							 | 
						|
								    
							 | 
						|
								    refM4.setRandom();
							 | 
						|
								    // sparse cwise* dense
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4);
							 | 
						|
								//     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test innerVector()
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    int j0 = ei_random(0,rows-1);
							 | 
						|
								    int j1 = ei_random(0,rows-1);
							 | 
						|
								    VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
							 | 
						|
								    VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
							 | 
						|
								    //m2.innerVector(j0) = 2*m2.innerVector(j1);
							 | 
						|
								    //refMat2.col(j0) = 2*refMat2.col(j1);
							 | 
						|
								    //VERIFY_IS_APPROX(m2, refMat2);
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test innerVectors()
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    int j0 = ei_random(0,rows-2);
							 | 
						|
								    int j1 = ei_random(0,rows-2);
							 | 
						|
								    int n0 = ei_random<int>(1,rows-std::max(j0,j1));
							 | 
						|
								    VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
							 | 
						|
								    VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
							 | 
						|
								                     refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
							 | 
						|
								    //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
							 | 
						|
								    //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // test transpose
							 | 
						|
								  {
							 | 
						|
								    DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    initSparse<Scalar>(density, refMat2, m2);
							 | 
						|
								    VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
							 | 
						|
								    VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								  // test prune
							 | 
						|
								  {
							 | 
						|
								    SparseMatrixType m2(rows, rows);
							 | 
						|
								    DenseMatrix refM2(rows, rows);
							 | 
						|
								    refM2.setZero();
							 | 
						|
								    int countFalseNonZero = 0;
							 | 
						|
								    int countTrueNonZero = 0;
							 | 
						|
								    m2.startFill();
							 | 
						|
								    for (int j=0; j<m2.outerSize(); ++j)
							 | 
						|
								      for (int i=0; i<m2.innerSize(); ++i)
							 | 
						|
								      {
							 | 
						|
								        float x = ei_random<float>(0,1);
							 | 
						|
								        if (x<0.1)
							 | 
						|
								        {
							 | 
						|
								          // do nothing
							 | 
						|
								        }
							 | 
						|
								        else if (x<0.5)
							 | 
						|
								        {
							 | 
						|
								          countFalseNonZero++;
							 | 
						|
								          m2.fill(i,j) = Scalar(0);
							 | 
						|
								        }
							 | 
						|
								        else
							 | 
						|
								        {
							 | 
						|
								          countTrueNonZero++;
							 | 
						|
								          m2.fill(i,j) = refM2(i,j) = Scalar(1);
							 | 
						|
								        }
							 | 
						|
								      }
							 | 
						|
								    m2.endFill();
							 | 
						|
								    VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
							 | 
						|
								    VERIFY_IS_APPROX(m2, refM2);
							 | 
						|
								    m2.prune(1);
							 | 
						|
								    VERIFY(countTrueNonZero==m2.nonZeros());
							 | 
						|
								    VERIFY_IS_APPROX(m2, refM2);
							 | 
						|
								  }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_sparse_basic()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat; i++) {
							 | 
						|
								    CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) );
							 | 
						|
								    CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) );
							 | 
						|
								    CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) );
							 | 
						|
								    
							 | 
						|
								    CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) );
							 | 
						|
								  }
							 | 
						|
								}
							 |