You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							158 lines
						
					
					
						
							5.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							158 lines
						
					
					
						
							5.8 KiB
						
					
					
				
								// This file is part of Eigen, a lightweight C++ template library
							 | 
						|
								// for linear algebra. Eigen itself is part of the KDE project.
							 | 
						|
								//
							 | 
						|
								// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
							 | 
						|
								// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
							 | 
						|
								//
							 | 
						|
								// This Source Code Form is subject to the terms of the Mozilla
							 | 
						|
								// Public License v. 2.0. If a copy of the MPL was not distributed
							 | 
						|
								// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
							 | 
						|
								
							 | 
						|
								#include "main.h"
							 | 
						|
								#include <functional>
							 | 
						|
								#include <Eigen/Array>
							 | 
						|
								
							 | 
						|
								using namespace std;
							 | 
						|
								
							 | 
						|
								template<typename Scalar> struct AddIfNull {
							 | 
						|
								    const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
							 | 
						|
								    enum { Cost = NumTraits<Scalar>::AddCost };
							 | 
						|
								};
							 | 
						|
								
							 | 
						|
								template<typename MatrixType> void cwiseops(const MatrixType& m)
							 | 
						|
								{
							 | 
						|
								  typedef typename MatrixType::Scalar Scalar;
							 | 
						|
								  typedef typename NumTraits<Scalar>::Real RealScalar;
							 | 
						|
								  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
							 | 
						|
								
							 | 
						|
								  int rows = m.rows();
							 | 
						|
								  int cols = m.cols();
							 | 
						|
								
							 | 
						|
								  MatrixType m1 = MatrixType::Random(rows, cols),
							 | 
						|
								             m2 = MatrixType::Random(rows, cols),
							 | 
						|
								             m3(rows, cols),
							 | 
						|
								             m4(rows, cols),
							 | 
						|
								             mzero = MatrixType::Zero(rows, cols),
							 | 
						|
								             mones = MatrixType::Ones(rows, cols),
							 | 
						|
								             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
							 | 
						|
								                              ::Identity(rows, rows),
							 | 
						|
								             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
							 | 
						|
								  VectorType v1 = VectorType::Random(rows),
							 | 
						|
								             v2 = VectorType::Random(rows),
							 | 
						|
								             vzero = VectorType::Zero(rows),
							 | 
						|
								             vones = VectorType::Ones(rows),
							 | 
						|
								             v3(rows);
							 | 
						|
								
							 | 
						|
								  int r = ei_random<int>(0, rows-1),
							 | 
						|
								      c = ei_random<int>(0, cols-1);
							 | 
						|
								  
							 | 
						|
								  Scalar s1 = ei_random<Scalar>();
							 | 
						|
								  
							 | 
						|
								  // test Zero, Ones, Constant, and the set* variants
							 | 
						|
								  m3 = MatrixType::Constant(rows, cols, s1);
							 | 
						|
								  for (int j=0; j<cols; ++j)
							 | 
						|
								    for (int i=0; i<rows; ++i)
							 | 
						|
								    {
							 | 
						|
								      VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
							 | 
						|
								      VERIFY_IS_APPROX(mones(i,j), Scalar(1));
							 | 
						|
								      VERIFY_IS_APPROX(m3(i,j), s1);
							 | 
						|
								    }
							 | 
						|
								  VERIFY(mzero.isZero());
							 | 
						|
								  VERIFY(mones.isOnes());
							 | 
						|
								  VERIFY(m3.isConstant(s1));
							 | 
						|
								  VERIFY(identity.isIdentity());
							 | 
						|
								  VERIFY_IS_APPROX(m4.setConstant(s1), m3);
							 | 
						|
								  VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
							 | 
						|
								  VERIFY_IS_APPROX(m4.setZero(), mzero);
							 | 
						|
								  VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
							 | 
						|
								  VERIFY_IS_APPROX(m4.setOnes(), mones);
							 | 
						|
								  VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
							 | 
						|
								  m4.fill(s1);
							 | 
						|
								  VERIFY_IS_APPROX(m4, m3);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
							 | 
						|
								  VERIFY_IS_APPROX(v3.setZero(rows), vzero);
							 | 
						|
								  VERIFY_IS_APPROX(v3.setOnes(rows), vones);
							 | 
						|
								
							 | 
						|
								  m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
							 | 
						|
								  VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
							 | 
						|
								  m3 = m1; m3.cwise() += 1;
							 | 
						|
								  VERIFY_IS_APPROX(m1 + mones, m3);
							 | 
						|
								  m3 = m1; m3.cwise() -= 1;
							 | 
						|
								  VERIFY_IS_APPROX(m1 - mones, m3);
							 | 
						|
								
							 | 
						|
								  VERIFY_IS_APPROX(m2, m2.cwise() * mones);
							 | 
						|
								  VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1);
							 | 
						|
								  m3 = m1;
							 | 
						|
								  m3.cwise() *= m2;
							 | 
						|
								  VERIFY_IS_APPROX(m3, m1.cwise() * m2);
							 | 
						|
								  
							 | 
						|
								  VERIFY_IS_APPROX(mones,    m2.cwise()/m2);
							 | 
						|
								  if(NumTraits<Scalar>::HasFloatingPoint)
							 | 
						|
								  {
							 | 
						|
								    VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse()));
							 | 
						|
								    m3 = m1.cwise().abs().cwise().sqrt();
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
							 | 
						|
								    VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
							 | 
						|
								    VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
							 | 
						|
								
							 | 
						|
								    VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
							 | 
						|
								    m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
							 | 
						|
								    m3 = m1.cwise().abs();
							 | 
						|
								    VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
							 | 
						|
								    
							 | 
						|
								//     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
							 | 
						|
								    VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
							 | 
						|
								    m3 = m1;
							 | 
						|
								    m3.cwise() /= m2;
							 | 
						|
								    VERIFY_IS_APPROX(m3, m1.cwise() / m2);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  // check min
							 | 
						|
								  VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
							 | 
						|
								  VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
							 | 
						|
								  VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
							 | 
						|
								
							 | 
						|
								  // check max
							 | 
						|
								  VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
							 | 
						|
								  VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
							 | 
						|
								  VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
							 | 
						|
								  
							 | 
						|
								  VERIFY( (m1.cwise() == m1).all() );
							 | 
						|
								  VERIFY( (m1.cwise() != m2).any() );
							 | 
						|
								  VERIFY(!(m1.cwise() == (m1+mones)).any() );
							 | 
						|
								  if (rows*cols>1)
							 | 
						|
								  {
							 | 
						|
								    m3 = m1;
							 | 
						|
								    m3(r,c) += 1;
							 | 
						|
								    VERIFY( (m1.cwise() == m3).any() );
							 | 
						|
								    VERIFY( !(m1.cwise() == m3).all() );
							 | 
						|
								  }
							 | 
						|
								  VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
							 | 
						|
								  VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
							 | 
						|
								  VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
							 | 
						|
								  VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
							 | 
						|
								
							 | 
						|
								  VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
							 | 
						|
								  VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
							 | 
						|
								  VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								void test_eigen2_cwiseop()
							 | 
						|
								{
							 | 
						|
								  for(int i = 0; i < g_repeat ; i++) {
							 | 
						|
								    CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
							 | 
						|
								    CALL_SUBTEST_2( cwiseops(Matrix4d()) );
							 | 
						|
								    CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
							 | 
						|
								    CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
							 | 
						|
								    CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
							 | 
						|
								    CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
							 | 
						|
								  }
							 | 
						|
								}
							 |