You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							93 lines
						
					
					
						
							2.8 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							93 lines
						
					
					
						
							2.8 KiB
						
					
					
				
								// Small bench routine for Eigen available in Eigen
							 | 
						|
								// (C) Desire NUENTSA WAKAM, INRIA
							 | 
						|
								
							 | 
						|
								#include <iostream>
							 | 
						|
								#include <fstream>
							 | 
						|
								#include <iomanip>
							 | 
						|
								#include <unsupported/Eigen/SparseExtra>
							 | 
						|
								#include <Eigen/SparseLU>
							 | 
						|
								#include <bench/BenchTimer.h>
							 | 
						|
								#ifdef EIGEN_METIS_SUPPORT
							 | 
						|
								#include <Eigen/MetisSupport>
							 | 
						|
								#endif
							 | 
						|
								
							 | 
						|
								using namespace std;
							 | 
						|
								using namespace Eigen;
							 | 
						|
								
							 | 
						|
								int main(int argc, char **args)
							 | 
						|
								{
							 | 
						|
								//   typedef complex<double> scalar; 
							 | 
						|
								  typedef double scalar; 
							 | 
						|
								  SparseMatrix<scalar, ColMajor> A; 
							 | 
						|
								  typedef SparseMatrix<scalar, ColMajor>::Index Index;
							 | 
						|
								  typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix;
							 | 
						|
								  typedef Matrix<scalar, Dynamic, 1> DenseRhs;
							 | 
						|
								  Matrix<scalar, Dynamic, 1> b, x, tmp;
							 | 
						|
								//   SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> >   solver;
							 | 
						|
								// #ifdef EIGEN_METIS_SUPPORT
							 | 
						|
								//   SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver; 
							 | 
						|
								//   std::cout<< "ORDERING : METIS\n"; 
							 | 
						|
								// #else
							 | 
						|
								  SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> >  solver;
							 | 
						|
								  std::cout<< "ORDERING : COLAMD\n"; 
							 | 
						|
								// #endif
							 | 
						|
								  
							 | 
						|
								  ifstream matrix_file; 
							 | 
						|
								  string line;
							 | 
						|
								  int  n;
							 | 
						|
								  BenchTimer timer; 
							 | 
						|
								  
							 | 
						|
								  // Set parameters
							 | 
						|
								  /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
							 | 
						|
								  if (argc < 2) assert(false && "please, give the matrix market file ");
							 | 
						|
								  loadMarket(A, args[1]);
							 | 
						|
								  cout << "End charging matrix " << endl;
							 | 
						|
								  bool iscomplex=false, isvector=false;
							 | 
						|
								  int sym;
							 | 
						|
								  getMarketHeader(args[1], sym, iscomplex, isvector);
							 | 
						|
								//   if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
							 | 
						|
								  if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
							 | 
						|
								  if (sym != 0) { // symmetric matrices, only the lower part is stored
							 | 
						|
								    SparseMatrix<scalar, ColMajor> temp; 
							 | 
						|
								    temp = A;
							 | 
						|
								    A = temp.selfadjointView<Lower>();
							 | 
						|
								  }
							 | 
						|
								  n = A.cols();
							 | 
						|
								  /* Fill the right hand side */
							 | 
						|
								
							 | 
						|
								  if (argc > 2)
							 | 
						|
								    loadMarketVector(b, args[2]);
							 | 
						|
								  else 
							 | 
						|
								  {
							 | 
						|
								    b.resize(n);
							 | 
						|
								    tmp.resize(n);
							 | 
						|
								//       tmp.setRandom();
							 | 
						|
								    for (int i = 0; i < n; i++) tmp(i) = i; 
							 | 
						|
								    b = A * tmp ;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  /* Compute the factorization */
							 | 
						|
								//   solver.isSymmetric(true);
							 | 
						|
								  timer.start(); 
							 | 
						|
								//   solver.compute(A);
							 | 
						|
								  solver.analyzePattern(A); 
							 | 
						|
								  timer.stop(); 
							 | 
						|
								  cout << "Time to analyze " << timer.value() << std::endl;
							 | 
						|
								  timer.reset(); 
							 | 
						|
								  timer.start(); 
							 | 
						|
								  solver.factorize(A); 
							 | 
						|
								  timer.stop(); 
							 | 
						|
								  cout << "Factorize Time " << timer.value() << std::endl;
							 | 
						|
								  timer.reset(); 
							 | 
						|
								  timer.start(); 
							 | 
						|
								  x = solver.solve(b);
							 | 
						|
								  timer.stop();
							 | 
						|
								  cout << "solve time " << timer.value() << std::endl; 
							 | 
						|
								  /* Check the accuracy */
							 | 
						|
								  Matrix<scalar, Dynamic, 1> tmp2 = b - A*x;
							 | 
						|
								  scalar tempNorm = tmp2.norm()/b.norm();
							 | 
						|
								  cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
							 | 
						|
								  cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl; 
							 | 
						|
								  
							 | 
						|
								  return 0;
							 | 
						|
								}
							 |