You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							93 lines
						
					
					
						
							3.2 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							93 lines
						
					
					
						
							3.2 KiB
						
					
					
				| /* FCTP, Fixed-Charge Transportation Problem */ | |
| 
 | |
| /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ | |
| 
 | |
| /* The Fixed-Charge Transportation Problem (FCTP) is obtained from | |
|    classical transportation problem by imposing a fixed cost on each | |
|    transportation link if there is a positive flow on that link. */ | |
| 
 | |
| param m, integer, > 0; | |
| /* number of sources */ | |
| 
 | |
| param n, integer, > 0; | |
| /* number of customers */ | |
| 
 | |
| set I := 1..m; | |
| /* set of sources */ | |
| 
 | |
| set J := 1..n; | |
| /* set of customers */ | |
| 
 | |
| param supply{i in I}, >= 0; | |
| /* supply at source i */ | |
| 
 | |
| param demand{j in J}, >= 0; | |
| /* demand at customer j */ | |
| 
 | |
| param varcost{i in I, j in J}, >= 0; | |
| /* variable cost (a cost per one unit shipped from i to j) */ | |
| 
 | |
| param fixcost{i in I, j in J}, >= 0; | |
| /* fixed cost (a cost for shipping any amount from i to j) */ | |
| 
 | |
| var x{i in I, j in J}, >= 0; | |
| /* amount shipped from source i to customer j */ | |
| 
 | |
| s.t. f{i in I}: sum{j in J} x[i,j] = supply[i]; | |
| /* observe supply at source i */ | |
| 
 | |
| s.t. g{j in J}: sum{i in I} x[i,j] = demand[j]; | |
| /* satisfy demand at customer j */ | |
| 
 | |
| var y{i in I, j in J}, binary; | |
| /* y[i,j] = 1 means some amount is shipped from i to j */ | |
| 
 | |
| s.t. h{i in I, j in J}: x[i,j] <= min(supply[i], demand[j]) * y[i,j]; | |
| /* if y[i,j] is 0, force x[i,j] to be 0 (may note that supply[i] and | |
|    demand[j] are implicit upper bounds for x[i,j] as follows from the | |
|    constraints f[i] and g[j]) */ | |
| 
 | |
| minimize cost: sum{i in I, j in J} varcost[i,j] * x[i,j] + | |
|                sum{i in I, j in J} fixcost[i,j] * y[i,j]; | |
| /* total transportation costs */ | |
| 
 | |
| data; | |
| 
 | |
| /* These data correspond to the instance bal8x12 from [Balinski]. */ | |
| 
 | |
| /* The optimal solution is 471.55 */ | |
| 
 | |
| param m := 8; | |
| 
 | |
| param n := 12; | |
| 
 | |
| param supply := 1 15.00,  2 20.00,  3 45.00,  4 35.00, | |
|                 5 25.00,  6 35.00,  7 10.00,  8 25.00; | |
| 
 | |
| param demand := 1 20.00,  2 15.00,  3 20.00,  4 15.00, | |
|                 5  5.00,  6 20.00,  7 30.00,  8 10.00, | |
|                 9 35.00, 10 25.00, 11 10.00, 12  5.00; | |
| 
 | |
| param varcost | |
|       :   1    2    3    4    5    6    7    8    9    10   11   12  := | |
|       1  0.69 0.64 0.71 0.79 1.70 2.83 2.02 5.64 5.94 5.94 5.94 7.68 | |
|       2  1.01 0.75 0.88 0.59 1.50 2.63 2.26 5.64 5.85 5.62 5.85 4.94 | |
|       3  1.05 1.06 1.08 0.64 1.22 2.37 1.66 5.64 5.91 5.62 5.91 4.94 | |
|       4  1.94 1.50 1.56 1.22 1.98 1.98 1.36 6.99 6.99 6.99 6.99 3.68 | |
|       5  1.61 1.40 1.61 1.33 1.68 2.83 1.54 4.26 4.26 4.26 4.26 2.99 | |
|       6  5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.31 0.21 0.17 0.31 1.53 | |
|       7  5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.55 0.35 0.40 0.19 1.53 | |
|       8  5.29 6.08 6.08 5.29 5.96 6.45 5.08 2.43 2.30 2.33 1.81 2.50 ; | |
| 
 | |
| param fixcost | |
|       :   1    2    3    4    5    6    7    8    9    10   11   12  := | |
|       1  11.0 16.0 18.0 17.0 10.0 20.0 17.0 13.0 15.0 12.0 14.0 14.0 | |
|       2  14.0 17.0 17.0 13.0 15.0 13.0 16.0 11.0 20.0 11.0 15.0 10.0 | |
|       3  12.0 13.0 20.0 17.0 13.0 15.0 16.0 13.0 12.0 13.0 10.0 18.0 | |
|       4  16.0 19.0 16.0 11.0 15.0 12.0 18.0 12.0 18.0 13.0 13.0 14.0 | |
|       5  19.0 18.0 15.0 16.0 12.0 14.0 20.0 19.0 11.0 17.0 16.0 18.0 | |
|       6  13.0 20.0 20.0 17.0 15.0 12.0 14.0 11.0 12.0 19.0 15.0 16.0 | |
|       7  11.0 12.0 15.0 10.0 17.0 11.0 11.0 16.0 10.0 18.0 17.0 12.0 | |
|       8  17.0 10.0 20.0 12.0 17.0 20.0 16.0 15.0 10.0 12.0 16.0 18.0 ; | |
| 
 | |
| end;
 |