You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							805 lines
						
					
					
						
							25 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							805 lines
						
					
					
						
							25 KiB
						
					
					
				
								/* -*- c++ -*- (enables emacs c++ mode) */
							 | 
						|
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2003-2012 Yves Renard, Caroline Lecalvez
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								 As a special exception, you  may use  this file  as it is a part of a free
							 | 
						|
								 software  library  without  restriction.  Specifically,  if   other  files
							 | 
						|
								 instantiate  templates  or  use macros or inline functions from this file,
							 | 
						|
								 or  you compile this  file  and  link  it  with other files  to produce an
							 | 
						|
								 executable, this file  does  not  by itself cause the resulting executable
							 | 
						|
								 to be covered  by the GNU Lesser General Public License.  This   exception
							 | 
						|
								 does not  however  invalidate  any  other  reasons why the executable file
							 | 
						|
								 might be covered by the GNU Lesser General Public License.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								
							 | 
						|
								/**@file gmm_solver_idgmres.h
							 | 
						|
								   @author  Caroline Lecalvez <Caroline.Lecalvez@gmm.insa-tlse.fr>
							 | 
						|
								   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
							 | 
						|
								   @date October 6, 2003.
							 | 
						|
								   @brief Implicitly restarted and deflated Generalized Minimum Residual.
							 | 
						|
								*/
							 | 
						|
								#ifndef GMM_IDGMRES_H
							 | 
						|
								#define GMM_IDGMRES_H
							 | 
						|
								
							 | 
						|
								#include "gmm_kernel.h"
							 | 
						|
								#include "gmm_iter.h"
							 | 
						|
								#include "gmm_dense_sylvester.h"
							 | 
						|
								
							 | 
						|
								namespace gmm {
							 | 
						|
								
							 | 
						|
								  template <typename T> compare_vp {
							 | 
						|
								    bool operator()(const std::pair<T, size_type> &a,
							 | 
						|
										    const std::pair<T, size_type> &b) const
							 | 
						|
								    { return (gmm::abs(a.first) > gmm::abs(b.first)); }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  struct idgmres_state {
							 | 
						|
								    size_type m, tb_deb, tb_def, p, k, nb_want, nb_unwant;
							 | 
						|
								    size_type nb_nolong, tb_deftot, tb_defwant, conv, nb_un, fin;
							 | 
						|
								    bool ok;
							 | 
						|
								
							 | 
						|
								    idgmres_state(size_type mm, size_type pp, size_type kk)
							 | 
						|
								      : m(mm), tb_deb(1), tb_def(0), p(pp), k(kk), nb_want(0),
							 | 
						|
									nb_unwant(0), nb_nolong(0), tb_deftot(0), tb_defwant(0),
							 | 
						|
									conv(0), nb_un(0), fin(0), ok(false); {}
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								    idgmres_state(size_type mm, size_type pp, size_type kk)
							 | 
						|
								      : m(mm), tb_deb(1), tb_def(0), p(pp), k(kk), nb_want(0),
							 | 
						|
									nb_unwant(0), nb_nolong(0), tb_deftot(0), tb_defwant(0),
							 | 
						|
									conv(0), nb_un(0), fin(0), ok(false); {}
							 | 
						|
								  
							 | 
						|
								
							 | 
						|
								  template <typename CONT, typename IND>
							 | 
						|
								  apply_permutation(CONT &cont, const IND &ind) {
							 | 
						|
								    size_type m = ind.end() - ind.begin();
							 | 
						|
								    std::vector<bool> sorted(m, false);
							 | 
						|
								    
							 | 
						|
								    for (size_type l = 0; l < m; ++l)
							 | 
						|
								      if (!sorted[l] && ind[l] != l) {
							 | 
						|
								
							 | 
						|
									typeid(cont[0]) aux = cont[l];
							 | 
						|
									k = ind[l];
							 | 
						|
									cont[l] = cont[k];
							 | 
						|
									sorted[l] = true;
							 | 
						|
									
							 | 
						|
									for(k2 = ind[k]; k2 != l; k2 = ind[k]) {
							 | 
						|
									  cont[k] = cont[k2];
							 | 
						|
									  sorted[k] = true;
							 | 
						|
									  k = k2;
							 | 
						|
									}
							 | 
						|
									cont[k] = aux;
							 | 
						|
								      }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  /** Implicitly restarted and deflated Generalized Minimum Residual
							 | 
						|
								
							 | 
						|
								      See: C. Le Calvez, B. Molina, Implicitly restarted and deflated
							 | 
						|
								      FOM and GMRES, numerical applied mathematics,
							 | 
						|
								      (30) 2-3 (1999) pp191-212.
							 | 
						|
								      
							 | 
						|
								      @param A Real or complex unsymmetric matrix.
							 | 
						|
								      @param x initial guess vector and final result.
							 | 
						|
								      @param b right hand side
							 | 
						|
								      @param M preconditionner
							 | 
						|
								      @param m size of the subspace between two restarts
							 | 
						|
								      @param p number of converged ritz values seeked
							 | 
						|
								      @param k size of the remaining Krylov subspace when the p ritz values
							 | 
						|
								      have not yet converged 0 <= p <= k < m.
							 | 
						|
								      @param tol_vp : tolerance on the ritz values.
							 | 
						|
								      @param outer
							 | 
						|
								      @param KS
							 | 
						|
								  */
							 | 
						|
								  template < typename Mat, typename Vec, typename VecB, typename Precond,
							 | 
						|
									     typename Basis >
							 | 
						|
								  void idgmres(const Mat &A, Vec &x, const VecB &b, const Precond &M,
							 | 
						|
									     size_type m, size_type p, size_type k, double tol_vp,
							 | 
						|
									     iteration &outer, Basis& KS) {
							 | 
						|
								
							 | 
						|
								    typedef typename linalg_traits<Mat>::value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								    
							 | 
						|
								    R a, beta;
							 | 
						|
								    idgmres_state st(m, p, k);
							 | 
						|
								
							 | 
						|
								    std::vector<T> w(vect_size(x)), r(vect_size(x)), u(vect_size(x));
							 | 
						|
								    std::vector<T> c_rot(m+1), s_rot(m+1), s(m+1);
							 | 
						|
								    std::vector<T> y(m+1), ztest(m+1), gam(m+1);
							 | 
						|
								    std::vector<T> gamma(m+1);
							 | 
						|
								    gmm::dense_matrix<T> H(m+1, m), Hess(m+1, m),
							 | 
						|
								      Hobl(m+1, m), W(vect_size(x), m+1);
							 | 
						|
								
							 | 
						|
								    gmm::clear(H);
							 | 
						|
								
							 | 
						|
								    outer.set_rhsnorm(gmm::vect_norm2(b));
							 | 
						|
								    if (outer.get_rhsnorm() == 0.0) { clear(x); return; }
							 | 
						|
								    
							 | 
						|
								    mult(A, scaled(x, -1.0), b, w);
							 | 
						|
								    mult(M, w, r);
							 | 
						|
								    beta = gmm::vect_norm2(r);
							 | 
						|
								
							 | 
						|
								    iteration inner = outer;
							 | 
						|
								    inner.reduce_noisy();
							 | 
						|
								    inner.set_maxiter(m);
							 | 
						|
								    inner.set_name("GMRes inner iter");
							 | 
						|
								    
							 | 
						|
								    while (! outer.finished(beta)) {
							 | 
						|
								      
							 | 
						|
								      gmm::copy(gmm::scaled(r, 1.0/beta), KS[0]);
							 | 
						|
								      gmm::clear(s);
							 | 
						|
								      s[0] = beta;
							 | 
						|
								      gmm::copy(s, gamma);
							 | 
						|
								
							 | 
						|
								      inner.set_maxiter(m - st.tb_deb + 1);
							 | 
						|
								      size_type i = st.tb_deb - 1; inner.init();
							 | 
						|
								      
							 | 
						|
								      do {
							 | 
						|
									mult(A, KS[i], u);
							 | 
						|
									mult(M, u, KS[i+1]);
							 | 
						|
									orthogonalize_with_refinment(KS, mat_col(H, i), i);
							 | 
						|
									H(i+1, i) = a = gmm::vect_norm2(KS[i+1]);
							 | 
						|
									gmm::scale(KS[i+1], R(1) / a);
							 | 
						|
								
							 | 
						|
									gmm::copy(mat_col(H, i), mat_col(Hess, i));
							 | 
						|
									gmm::copy(mat_col(H, i), mat_col(Hobl, i));
							 | 
						|
									
							 | 
						|
								
							 | 
						|
									for (size_type l = 0; l < i; ++l)
							 | 
						|
									  Apply_Givens_rotation_left(H(l,i), H(l+1,i), c_rot[l], s_rot[l]);
							 | 
						|
									
							 | 
						|
									Givens_rotation(H(i,i), H(i+1,i), c_rot[i], s_rot[i]);
							 | 
						|
									Apply_Givens_rotation_left(H(i,i), H(i+1,i), c_rot[i], s_rot[i]);
							 | 
						|
									H(i+1, i) = T(0); 
							 | 
						|
									Apply_Givens_rotation_left(s[i], s[i+1], c_rot[i], s_rot[i]);
							 | 
						|
									
							 | 
						|
									++inner, ++outer, ++i;
							 | 
						|
								      } while (! inner.finished(gmm::abs(s[i])));
							 | 
						|
								
							 | 
						|
								      if (inner.converged()) {
							 | 
						|
									gmm::copy(s, y);
							 | 
						|
									upper_tri_solve(H, y, i, false);
							 | 
						|
									combine(KS, y, x, i);
							 | 
						|
									mult(A, gmm::scaled(x, T(-1)), b, w);
							 | 
						|
									mult(M, w, r);
							 | 
						|
									beta = gmm::vect_norm2(r); // + verif sur beta ... à faire
							 | 
						|
									break;
							 | 
						|
								      }
							 | 
						|
								
							 | 
						|
								      gmm::clear(gam); gam[m] = s[i];
							 | 
						|
								      for (size_type l = m; l > 0; --l)
							 | 
						|
									Apply_Givens_rotation_left(gam[l-1], gam[l], gmm::conj(c_rot[l-1]),
							 | 
						|
												   -s_rot[l-1]);
							 | 
						|
								
							 | 
						|
								      mult(KS.mat(), gam, r);
							 | 
						|
								      beta = gmm::vect_norm2(r);
							 | 
						|
								      
							 | 
						|
								      mult(Hess, scaled(y, T(-1)), gamma, ztest);
							 | 
						|
								      // En fait, d'après Caroline qui s'y connait ztest et gam devrait
							 | 
						|
								      // être confondus
							 | 
						|
								      // Quand on aura vérifié que ça marche, il faudra utiliser gam à la 
							 | 
						|
								      // place de ztest.
							 | 
						|
								      if (st.tb_def < p) {
							 | 
						|
								        T nss = H(m,m-1) / ztest[m];
							 | 
						|
									nss /= gmm::abs(nss); // ns à calculer plus tard aussi
							 | 
						|
									gmm::copy(KS.mat(), W); gmm::copy(scaled(r, nss /beta), mat_col(W, m));
							 | 
						|
									
							 | 
						|
									// Computation of the oblique matrix
							 | 
						|
									sub_interval SUBI(0, m);
							 | 
						|
									add(scaled(sub_vector(ztest, SUBI), -Hobl(m, m-1) / ztest[m]),
							 | 
						|
									    sub_vector(mat_col(Hobl, m-1), SUBI));
							 | 
						|
									Hobl(m, m-1) *= nss * beta / ztest[m]; 
							 | 
						|
								
							 | 
						|
									/* **************************************************************** */
							 | 
						|
									/*  Locking                                                         */
							 | 
						|
									/* **************************************************************** */
							 | 
						|
								
							 | 
						|
									// Computation of the Ritz eigenpairs.
							 | 
						|
									std::vector<std::complex<R> > eval(m);
							 | 
						|
									dense_matrix<T> YB(m-st.tb_def, m-st.tb_def);
							 | 
						|
									std::vector<char> pure(m-st.tb_def, 0);
							 | 
						|
									gmm::clear(YB);
							 | 
						|
								
							 | 
						|
									select_eval(Hobl, eval, YB, pure, st);
							 | 
						|
								
							 | 
						|
									if (st.conv != 0) {
							 | 
						|
									  // DEFLATION using the QR Factorization of YB
							 | 
						|
									  
							 | 
						|
									  T alpha = Lock(W, Hobl,
							 | 
						|
											 sub_matrix(YB,  sub_interval(0, m-st.tb_def)),
							 | 
						|
											 sub_interval(st.tb_def, m-st.tb_def), 
							 | 
						|
											 (st.tb_defwant < p)); 
							 | 
						|
									  // ns *= alpha; // à calculer plus tard ??
							 | 
						|
									  //  V(:,m+1) = alpha*V(:, m+1); ça devait servir à qlq chose ...
							 | 
						|
								
							 | 
						|
								
							 | 
						|
									  //       Clean the portions below the diagonal corresponding
							 | 
						|
									  //       to the lock Schur vectors
							 | 
						|
								
							 | 
						|
									  for (size_type j = st.tb_def; j < st.tb_deftot; ++j) {
							 | 
						|
									    if ( pure[j-st.tb_def] == 0)
							 | 
						|
									      gmm::clear(sub_vector(mat_col(Hobl,j), sub_interval(j+1,m-j)));
							 | 
						|
									    else if (pure[j-st.tb_def] == 1) {
							 | 
						|
									      gmm::clear(sub_matrix(Hobl, sub_interval(j+2,m-j-1),
							 | 
						|
												    sub_interval(j, 2))); 
							 | 
						|
									      ++j;
							 | 
						|
									    }
							 | 
						|
									    else GMM_ASSERT3(false, "internal error");
							 | 
						|
									  }
							 | 
						|
									  
							 | 
						|
									  if (!st.ok) {
							 | 
						|
								
							 | 
						|
									    // attention si m = 0;
							 | 
						|
									    size_type mm = std::min(k+st.nb_unwant+st.nb_nolong, m-1);
							 | 
						|
								
							 | 
						|
									    if (eval_sort[m-mm-1].second != R(0)
							 | 
						|
										&& eval_sort[m-mm-1].second == -eval_sort[m-mm].second) ++mm;
							 | 
						|
								
							 | 
						|
									    std::vector<complex<R> > shifts(m-mm);
							 | 
						|
									    for (size_type i = 0; i < m-mm; ++i)
							 | 
						|
									      shifts[i] = eval_sort[i].second;
							 | 
						|
								
							 | 
						|
									    apply_shift_to_Arnoldi_factorization(W, Hobl, shifts, mm,
							 | 
						|
														 m-mm, true);
							 | 
						|
								
							 | 
						|
									    st.fin = mm;
							 | 
						|
									  }
							 | 
						|
									  else
							 | 
						|
									    st.fin = st.tb_deftot;
							 | 
						|
								
							 | 
						|
								
							 | 
						|
									  /* ************************************************************** */
							 | 
						|
									  /*  Purge                                                         */
							 | 
						|
									  /* ************************************************************** */
							 | 
						|
								
							 | 
						|
									  if (st.nb_nolong + st.nb_unwant > 0) {
							 | 
						|
								
							 | 
						|
									    std::vector<std::complex<R> > eval(m);
							 | 
						|
									    dense_matrix<T> YB(st.fin, st.tb_deftot);
							 | 
						|
									    std::vector<char> pure(st.tb_deftot, 0);
							 | 
						|
									    gmm::clear(YB);
							 | 
						|
									    st.nb_un = st.nb_nolong + st.nb_unwant;
							 | 
						|
									    
							 | 
						|
									    select_eval_for_purging(Hobl, eval, YB, pure, st);
							 | 
						|
									    
							 | 
						|
									    T alpha = Lock(W, Hobl, YB, sub_interval(0, st.fin), ok);
							 | 
						|
								
							 | 
						|
									    //       Clean the portions below the diagonal corresponding
							 | 
						|
									    //       to the unwanted lock Schur vectors
							 | 
						|
									    
							 | 
						|
									    for (size_type j = 0; j < st.tb_deftot; ++j) {
							 | 
						|
									      if ( pure[j] == 0)
							 | 
						|
										gmm::clear(sub_vector(mat_col(Hobl,j), sub_interval(j+1,m-j)));
							 | 
						|
									      else if (pure[j] == 1) {
							 | 
						|
										gmm::clear(sub_matrix(Hobl, sub_interval(j+2,m-j-1),
							 | 
						|
												      sub_interval(j, 2))); 
							 | 
						|
										++j;
							 | 
						|
									      }
							 | 
						|
									      else GMM_ASSERT3(false, "internal error");
							 | 
						|
									    }
							 | 
						|
								
							 | 
						|
									    gmm::dense_matrix<T> z(st.nb_un, st.fin - st.nb_un);
							 | 
						|
									    sub_interval SUBI(0, st.nb_un), SUBJ(st.nb_un, st.fin - st.nb_un);
							 | 
						|
									    sylvester(sub_matrix(Hobl, SUBI),
							 | 
						|
										      sub_matrix(Hobl, SUBJ),
							 | 
						|
										      sub_matrix(gmm::scaled(Hobl, -T(1)), SUBI, SUBJ), z);
							 | 
						|
									    
							 | 
						|
									  }
							 | 
						|
								
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								
							 | 
						|
								  template < typename Mat, typename Vec, typename VecB, typename Precond >
							 | 
						|
								    void idgmres(const Mat &A, Vec &x, const VecB &b,
							 | 
						|
										 const Precond &M, size_type m, iteration& outer) {
							 | 
						|
								    typedef typename linalg_traits<Mat>::value_type T;
							 | 
						|
								    modified_gram_schmidt<T> orth(m, vect_size(x));
							 | 
						|
								    gmres(A, x, b, M, m, outer, orth); 
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  // Lock stage of an implicit restarted Arnoldi process.
							 | 
						|
								  // 1- QR factorization of YB through Householder matrices
							 | 
						|
								  //    Q(Rl) = YB
							 | 
						|
								  //     (0 )
							 | 
						|
								  // 2- Update of the Arnoldi factorization.
							 | 
						|
								  //    H <- Q*HQ,  W <- WQ
							 | 
						|
								  // 3- Restore the Hessemberg form of H.
							 | 
						|
								
							 | 
						|
								  template <typename T, typename MATYB>
							 | 
						|
								    void Lock(gmm::dense_matrix<T> &W, gmm::dense_matrix<T> &H,
							 | 
						|
									      const MATYB &YB, const sub_interval SUB,
							 | 
						|
									      bool restore, T &ns) {
							 | 
						|
								
							 | 
						|
								    size_type n = mat_nrows(W), m = mat_ncols(W) - 1;
							 | 
						|
								    size_type ncols = mat_ncols(YB), nrows = mat_nrows(YB);
							 | 
						|
								    size_type begin = min(SUB); end = max(SUB) - 1;
							 | 
						|
								    sub_interval SUBR(0, nrows), SUBC(0, ncols);
							 | 
						|
								    T alpha(1);
							 | 
						|
								
							 | 
						|
								    GMM_ASSERT2(((end-begin) == ncols) && (m == mat_nrows(H)) 
							 | 
						|
										&& (m+1 == mat_ncols(H)), "dimensions mismatch");
							 | 
						|
								    
							 | 
						|
								    // DEFLATION using the QR Factorization of YB
							 | 
						|
									  
							 | 
						|
								    dense_matrix<T> QR(n_rows, n_rows);
							 | 
						|
								    gmmm::copy(YB, sub_matrix(QR, SUBR, SUBC));
							 | 
						|
								    gmm::clear(submatrix(QR, SUBR, sub_interval(ncols, nrows-ncols)));
							 | 
						|
								    qr_factor(QR); 
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								    apply_house_left(QR, sub_matrix(H, SUB));
							 | 
						|
								    apply_house_right(QR, sub_matrix(H, SUBR, SUB));
							 | 
						|
								    apply_house_right(QR, sub_matrix(W, sub_interval(0, n), SUB));
							 | 
						|
								    
							 | 
						|
								    //       Restore to the initial block hessenberg form
							 | 
						|
								    
							 | 
						|
								    if (restore) {
							 | 
						|
								      
							 | 
						|
								      // verifier quand m = 0 ...
							 | 
						|
								      gmm::dense_matrix tab_p(end - st.tb_deftot, end - st.tb_deftot);
							 | 
						|
								      gmm::copy(identity_matrix(), tab_p);
							 | 
						|
								      
							 | 
						|
								      for (size_type j = end-1; j >= st.tb_deftot+2; --j) {
							 | 
						|
									
							 | 
						|
									size_type jm = j-1;
							 | 
						|
									std::vector<T> v(jm - st.tb_deftot);
							 | 
						|
									sub_interval SUBtot(st.tb_deftot, jm - st.tb_deftot);
							 | 
						|
									sub_interval SUBtot2(st.tb_deftot, end - st.tb_deftot);
							 | 
						|
									gmm::copy(sub_vector(mat_row(H, j), SUBtot), v);
							 | 
						|
									house_vector_last(v);
							 | 
						|
									w.resize(end);
							 | 
						|
									col_house_update(sub_matrix(H, SUBI, SUBtot), v, w);
							 | 
						|
									w.resize(end - st.tb_deftot);
							 | 
						|
									row_house_update(sub_matrix(H, SUBtot, SUBtot2), v, w);
							 | 
						|
									gmm::clear(sub_vector(mat_row(H, j),
							 | 
						|
											      sub_interval(st.tb_deftot, j-1-st.tb_deftot)));
							 | 
						|
									w.resize(end - st.tb_deftot);
							 | 
						|
									col_house_update(sub_matrix(tab_p, sub_interval(0, end-st.tb_deftot),
							 | 
						|
												    sub_interval(0, jm-st.tb_deftot)), v, w);
							 | 
						|
									w.resize(n);
							 | 
						|
									col_house_update(sub_matrix(W, sub_interval(0, n), SUBtot), v, w);
							 | 
						|
								      }
							 | 
						|
								      
							 | 
						|
								      //       restore positive subdiagonal elements
							 | 
						|
								      
							 | 
						|
								      std::vector<T> d(fin-st.tb_deftot); d[0] = T(1);
							 | 
						|
								      
							 | 
						|
								      // We compute d[i+1] in order 
							 | 
						|
								      // (d[i+1] * H(st.tb_deftot+i+1,st.tb_deftoti)) / d[i] 
							 | 
						|
								      // be equal to |H(st.tb_deftot+i+1,st.tb_deftot+i))|.
							 | 
						|
								      for (size_type j = 0; j+1 < end-st.tb_deftot; ++j) {
							 | 
						|
									T e = H(st.tb_deftot+j, st.tb_deftot+j-1);
							 | 
						|
									d[j+1] = (e == T(0)) ? T(1) :  d[j] * gmm::abs(e) / e;
							 | 
						|
									scale(sub_vector(mat_row(H, st.tb_deftot+j+1),
							 | 
						|
											 sub_interval(st.tb_deftot, m-st.tb_deftot)), d[j+1]);
							 | 
						|
									scale(mat_col(H, st.tb_deftot+j+1), T(1) / d[j+1]);
							 | 
						|
									scale(mat_col(W, st.tb_deftot+j+1), T(1) / d[j+1]);
							 | 
						|
								      }
							 | 
						|
								
							 | 
						|
								      alpha = tab_p(end-st.tb_deftot-1, end-st.tb_deftot-1) / d[end-st.tb_deftot-1];
							 | 
						|
								      alpha /= gmm::abs(alpha);
							 | 
						|
								      scale(mat_col(W, m), alpha);
							 | 
						|
									    
							 | 
						|
								    }
							 | 
						|
									 
							 | 
						|
								    return alpha;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  // Apply p implicit shifts to the Arnoldi factorization
							 | 
						|
								  // AV = VH+H(k+p+1,k+p) V(:,k+p+1) e_{k+p}*
							 | 
						|
								  // and produces the following new Arnoldi factorization
							 | 
						|
								  // A(VQ) = (VQ)(Q*HQ)+H(k+p+1,k+p) V(:,k+p+1) e_{k+p}* Q
							 | 
						|
								  // where only the first k columns are relevant.
							 | 
						|
								  //
							 | 
						|
								  // Dan Sorensen and Richard J. Radke, 11/95
							 | 
						|
								  template<typename T, typename C>
							 | 
						|
								    apply_shift_to_Arnoldi_factorization(dense_matrix<T> V, dense_matrix<T> H,
							 | 
						|
													 std::vector<C> Lambda, size_type &k,
							 | 
						|
													 size_type p, bool true_shift = false) {
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								    size_type k1 = 0, num = 0, kend = k+p, kp1 = k + 1;
							 | 
						|
								    bool mark = false;
							 | 
						|
								    T c, s, x, y, z;
							 | 
						|
								
							 | 
						|
								    dense_matrix<T> q(1, kend);
							 | 
						|
								    gmm::clear(q); q(0,kend-1) = T(1);
							 | 
						|
								    std::vector<T> hv(3), w(std::max(kend, mat_nrows(V)));
							 | 
						|
								
							 | 
						|
								    for(size_type jj = 0; jj < p; ++jj) {
							 | 
						|
								      //     compute and apply a bulge chase sweep initiated by the
							 | 
						|
								      //     implicit shift held in w(jj)
							 | 
						|
								   
							 | 
						|
								      if (abs(Lambda[jj].real()) == 0.0) {
							 | 
						|
									//       apply a real shift using 2 by 2 Givens rotations
							 | 
						|
								
							 | 
						|
									for (size_type k1 = 0, k2 = 0; k2 != kend-1; k1 = k2+1) {
							 | 
						|
									  k2 = k1;
							 | 
						|
									  while (h(k2+1, k2) != T(0) && k2 < kend-1) ++k2;
							 | 
						|
								
							 | 
						|
									  Givens_rotation(H(k1, k1) - Lambda[jj], H(k1+1, k1), c, s);
							 | 
						|
									  
							 | 
						|
									  for (i = k1; i <= k2; ++i) {
							 | 
						|
								            if (i > k1) Givens_rotation(H(i, i-1), H(i+1, i-1), c, s);
							 | 
						|
								            
							 | 
						|
									    // Ne pas oublier de nettoyer H(i+1,i-1) (le mettre à zéro).
							 | 
						|
									    // Vérifier qu'au final H(i+1,i) est bien un réel positif.
							 | 
						|
								
							 | 
						|
								            // apply rotation from left to rows of H
							 | 
						|
									    row_rot(sub_matrix(H, sub_interval(i,2), sub_interval(i, kend-i)),
							 | 
						|
										    c, s, 0, 0);
							 | 
						|
									    
							 | 
						|
									    // apply rotation from right to columns of H
							 | 
						|
								            size_type ip2 = std::min(i+2, kend);
							 | 
						|
								            col_rot(sub_matrix(H, sub_interval(0, ip2), sub_interval(i, 2))
							 | 
						|
										    c, s, 0, 0);
							 | 
						|
								            
							 | 
						|
								            // apply rotation from right to columns of V
							 | 
						|
									    col_rot(V, c, s, i, i+1);
							 | 
						|
								            
							 | 
						|
								            // accumulate e'  Q so residual can be updated k+p
							 | 
						|
									    Apply_Givens_rotation_left(q(0,i), q(0,i+1), c, s);
							 | 
						|
									    // peut être que nous utilisons G au lieu de G* et que
							 | 
						|
									    // nous allons trop loin en k2.
							 | 
						|
									  }
							 | 
						|
									}
							 | 
						|
									
							 | 
						|
									num = num + 1;
							 | 
						|
								      }
							 | 
						|
								      else {
							 | 
						|
								      
							 | 
						|
									// Apply a double complex shift using 3 by 3 Householder 
							 | 
						|
									// transformations
							 | 
						|
								      
							 | 
						|
									if (jj == p || mark)
							 | 
						|
									  mark = false;     // skip application of conjugate shift
							 | 
						|
									else {
							 | 
						|
									  num = num + 2;    // mark that a complex conjugate
							 | 
						|
									  mark = true;      // pair has been applied
							 | 
						|
								
							 | 
						|
									  // Indices de fin de boucle à surveiller... de près !
							 | 
						|
									  for (size_type k1 = 0, k3 = 0; k3 != kend-2; k1 = k3+1) {
							 | 
						|
									    k3 = k1;
							 | 
						|
									    while (h(k3+1, k3) != T(0) && k3 < kend-2) ++k3;
							 | 
						|
									    size_type k2 = k1+1;
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								            x = H(k1,k1) * H(k1,k1) + H(k1,k2) * H(k2,k1)
							 | 
						|
									      - 2.0*Lambda[jj].real() * H(k1,k1) + gmm::abs_sqr(Lambda[jj]);
							 | 
						|
									    y = H(k2,k1) * (H(k1,k1) + H(k2,k2) - 2.0*Lambda[jj].real());
							 | 
						|
									    z = H(k2+1,k2) * H(k2,k1);
							 | 
						|
								
							 | 
						|
									    for (size_type i = k1; i <= k3; ++i) {
							 | 
						|
									      if (i > k1) {
							 | 
						|
										x = H(i, i-1);
							 | 
						|
										y = H(i+1, i-1);
							 | 
						|
										z = H(i+2, i-1);
							 | 
						|
										// Ne pas oublier de nettoyer H(i+1,i-1) et H(i+2,i-1) 
							 | 
						|
										// (les mettre à zéro).
							 | 
						|
									      }
							 | 
						|
								
							 | 
						|
									      hv[0] = x; hv[1] = y; hv[2] = z;
							 | 
						|
									      house_vector(v);
							 | 
						|
								
							 | 
						|
									      // Vérifier qu'au final H(i+1,i) est bien un réel positif
							 | 
						|
								
							 | 
						|
									      // apply transformation from left to rows of H
							 | 
						|
									      w.resize(kend-i);
							 | 
						|
									      row_house_update(sub_matrix(H, sub_interval(i, 2),
							 | 
						|
													  sub_interval(i, kend-i)), v, w);
							 | 
						|
								               
							 | 
						|
									      // apply transformation from right to columns of H
							 | 
						|
								               
							 | 
						|
									      size_type ip3 = std::min(kend, i + 3);
							 | 
						|
									      w.resize(ip3);
							 | 
						|
								              col_house_update(sub_matrix(H, sub_interval(0, ip3),
							 | 
						|
													  sub_interval(i, 2)), v, w);
							 | 
						|
								               
							 | 
						|
									      // apply transformation from right to columns of V
							 | 
						|
									      
							 | 
						|
									      w.resize(mat_nrows(V));
							 | 
						|
									      col_house_update(sub_matrix(V, sub_interval(0, mat_nrows(V)),
							 | 
						|
													  sub_interval(i, 2)), v, w);
							 | 
						|
								               
							 | 
						|
									      // accumulate e' Q so residual can be updated  k+p
							 | 
						|
								
							 | 
						|
									      w.resize(1);
							 | 
						|
									      col_house_update(sub_matrix(q, sub_interval(0,1),
							 | 
						|
													  sub_interval(i,2)), v, w);
							 | 
						|
								               
							 | 
						|
									    }
							 | 
						|
									  }
							 | 
						|
								         
							 | 
						|
									  //           clean up step with Givens rotation
							 | 
						|
								
							 | 
						|
									  i = kend-2;
							 | 
						|
									  c = x; s = y;
							 | 
						|
									  if (i > k1) Givens_rotation(H(i, i-1), H(i+1, i-1), c, s);
							 | 
						|
								            
							 | 
						|
									  // Ne pas oublier de nettoyer H(i+1,i-1) (le mettre à zéro).
							 | 
						|
									  // Vérifier qu'au final H(i+1,i) est bien un réel positif.
							 | 
						|
								
							 | 
						|
									  // apply rotation from left to rows of H
							 | 
						|
									  row_rot(sub_matrix(H, sub_interval(i,2), sub_interval(i, kend-i)),
							 | 
						|
										    c, s, 0, 0);
							 | 
						|
									    
							 | 
						|
									  // apply rotation from right to columns of H
							 | 
						|
									  size_type ip2 = std::min(i+2, kend);
							 | 
						|
									  col_rot(sub_matrix(H, sub_interval(0, ip2), sub_interval(i, 2))
							 | 
						|
										  c, s, 0, 0);
							 | 
						|
								            
							 | 
						|
									  // apply rotation from right to columns of V
							 | 
						|
									  col_rot(V, c, s, i, i+1);
							 | 
						|
								            
							 | 
						|
									  // accumulate e'  Q so residual can be updated k+p
							 | 
						|
									  Apply_Givens_rotation_left(q(0,i), q(0,i+1), c, s);
							 | 
						|
								
							 | 
						|
									}
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    //  update residual and store in the k+1 -st column of v
							 | 
						|
								
							 | 
						|
								    k = kend - num;
							 | 
						|
								    scale(mat_col(V, kend), q(0, k));
							 | 
						|
								    
							 | 
						|
								    if (k < mat_nrows(H)) {
							 | 
						|
								      if (true_shift)
							 | 
						|
									gmm::copy(mat_col(V, kend), mat_col(V, k));
							 | 
						|
								      else
							 | 
						|
									   //   v(:,k+1) = v(:,kend+1) + v(:,k+1)*h(k+1,k);
							 | 
						|
									   //   v(:,k+1) = v(:,kend+1) ;
							 | 
						|
									gmm::add(scaled(mat_col(V, kend), H(kend, kend-1)), 
							 | 
						|
										 scaled(mat_col(V, k), H(k, k-1)), mat_col(V, k));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    H(k, k-1) = vect_norm2(mat_col(V, k));
							 | 
						|
								    scale(mat_col(V, kend), T(1) / H(k, k-1));
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  template<typename MAT, typename EVAL, typename PURE>
							 | 
						|
								  void select_eval(const MAT &Hobl, EVAL &eval, MAT &YB, PURE &pure,
							 | 
						|
										   idgmres_state &st) {
							 | 
						|
								
							 | 
						|
								    typedef typename linalg_traits<MAT>::value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								    size_type m = st.m;
							 | 
						|
								
							 | 
						|
								    // Computation of the Ritz eigenpairs.
							 | 
						|
								    
							 | 
						|
								    col_matrix< std::vector<T> > evect(m-st.tb_def, m-st.tb_def);
							 | 
						|
								    // std::vector<std::complex<R> > eval(m);
							 | 
						|
								    std::vector<R> ritznew(m, T(-1));
							 | 
						|
									
							 | 
						|
								    // dense_matrix<T> evect_lock(st.tb_def, st.tb_def);
							 | 
						|
								    
							 | 
						|
								    sub_interval SUB1(st.tb_def, m-st.tb_def);
							 | 
						|
								    implicit_qr_algorithm(sub_matrix(Hobl, SUB1),
							 | 
						|
											  sub_vector(eval, SUB1), evect);
							 | 
						|
								    sub_interval SUB2(0, st.tb_def);
							 | 
						|
								    implicit_qr_algorithm(sub_matrix(Hobl, SUB2),
							 | 
						|
											  sub_vector(eval, SUB2), /* evect_lock */);
							 | 
						|
								    
							 | 
						|
								    for (size_type l = st.tb_def; l < m; ++l)
							 | 
						|
								      ritznew[l] = gmm::abs(evect(m-st.tb_def-1, l-st.tb_def) * Hobl(m, m-1));
							 | 
						|
								    
							 | 
						|
								    std::vector< std::pair<T, size_type> > eval_sort(m);
							 | 
						|
								    for (size_type l = 0; l < m; ++l)
							 | 
						|
								      eval_sort[l] = std::pair<T, size_type>(eval[l], l);
							 | 
						|
								    std::sort(eval_sort.begin(), eval_sort.end(), compare_vp());
							 | 
						|
								    
							 | 
						|
								    std::vector<size_type> index(m);
							 | 
						|
								    for (size_type l = 0; l < m; ++l) index[l] = eval_sort[l].second;
							 | 
						|
								    
							 | 
						|
								    std::vector<bool> kept(m, false);
							 | 
						|
								    std::fill(kept.begin(), kept.begin()+st.tb_def, true);
							 | 
						|
								
							 | 
						|
								    apply_permutation(eval, index);
							 | 
						|
								    apply_permutation(evect, index);
							 | 
						|
								    apply_permutation(ritznew, index);
							 | 
						|
								    apply_permutation(kept, index);
							 | 
						|
								
							 | 
						|
								    //	Which are the eigenvalues that converged ?
							 | 
						|
								    //
							 | 
						|
								    //	nb_want is the number of eigenvalues of 
							 | 
						|
								    //	Hess(tb_def+1:n,tb_def+1:n) that converged and are WANTED
							 | 
						|
								    //
							 | 
						|
								    //	nb_unwant is the number of eigenvalues of 
							 | 
						|
								    //	Hess(tb_def+1:n,tb_def+1:n) that converged and are UNWANTED
							 | 
						|
								    //
							 | 
						|
								    //	nb_nolong is the number of eigenvalues of 
							 | 
						|
								    //	Hess(1:tb_def,1:tb_def) that are NO LONGER WANTED. 
							 | 
						|
								    //
							 | 
						|
								    //	tb_deftot is the number of the deflated eigenvalues
							 | 
						|
								    //	that is tb_def + nb_want + nb_unwant
							 | 
						|
								    //
							 | 
						|
								    //	tb_defwant is the number of the wanted deflated eigenvalues
							 | 
						|
								    //	that is tb_def + nb_want - nb_nolong
							 | 
						|
								    
							 | 
						|
								    st.nb_want = 0, st.nb_unwant = 0, st.nb_nolong = 0;
							 | 
						|
								    size_type j, ind;
							 | 
						|
								    
							 | 
						|
								    for (j = 0, ind = 0; j < m-p; ++j) {
							 | 
						|
								      if (ritznew[j] == R(-1)) {
							 | 
						|
									if (std::imag(eval[j]) != R(0)) {
							 | 
						|
									  st.nb_nolong += 2; ++j; //  à adapter dans le cas complexe ...
							 | 
						|
									} 
							 | 
						|
									else st.nb_nolong++;
							 | 
						|
								      }
							 | 
						|
								      else {
							 | 
						|
									if (ritznew[j]
							 | 
						|
									    < tol_vp * gmm::abs(eval[j])) {
							 | 
						|
									  
							 | 
						|
									  for (size_type l = 0, l < m-st.tb_def; ++l)
							 | 
						|
									    YB(l, ind) = std::real(evect(l, j));
							 | 
						|
									  kept[j] = true;
							 | 
						|
									  ++j; ++st.nb_unwant; ind++;
							 | 
						|
									  
							 | 
						|
									  if (std::imag(eval[j]) != R(0)) {
							 | 
						|
									    for (size_type l = 0, l < m-st.tb_def; ++l)
							 | 
						|
									      YB(l, ind) = std::imag(evect(l, j));
							 | 
						|
									    pure[ind-1] = 1;
							 | 
						|
									    pure[ind] = 2;
							 | 
						|
									    
							 | 
						|
									    kept[j] = true;
							 | 
						|
									    
							 | 
						|
									    st.nb_unwant++;
							 | 
						|
									    ++ind;
							 | 
						|
									  }
							 | 
						|
									}
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    
							 | 
						|
								    for (; j < m; ++j) {
							 | 
						|
								      if (ritznew[j] != R(-1)) {
							 | 
						|
								
							 | 
						|
									for (size_type l = 0, l < m-st.tb_def; ++l)
							 | 
						|
									  YB(l, ind) = std::real(evect(l, j));
							 | 
						|
									pure[ind] = 1;
							 | 
						|
									++ind;
							 | 
						|
									kept[j] = true;
							 | 
						|
									++st.nb_want;
							 | 
						|
									
							 | 
						|
									if (ritznew[j]
							 | 
						|
									    < tol_vp * gmm::abs(eval[j])) {
							 | 
						|
									  for (size_type l = 0, l < m-st.tb_def; ++l)
							 | 
						|
									    YB(l, ind) = std::imag(evect(l, j));
							 | 
						|
									  pure[ind] = 2;
							 | 
						|
									  
							 | 
						|
									  j++;
							 | 
						|
									  kept[j] = true;
							 | 
						|
									  
							 | 
						|
									  st.nb_want++;
							 | 
						|
									  ++ind;	      
							 | 
						|
									}
							 | 
						|
								      }
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								    std::vector<T> shift(m - st.tb_def - st.nb_want - st.nb_unwant);
							 | 
						|
								    for (size_type j = 0, i = 0; j < m; ++j)
							 | 
						|
								      if (!kept[j]) shift[i++] = eval[j];
							 | 
						|
								    
							 | 
						|
								    // st.conv (st.nb_want+st.nb_unwant) is the number of eigenpairs that
							 | 
						|
								    //   have just converged.
							 | 
						|
								    // st.tb_deftot is the total number of eigenpairs that have converged.
							 | 
						|
								    
							 | 
						|
								    size_type st.conv = ind;
							 | 
						|
								    size_type st.tb_deftot = st.tb_def + st.conv;
							 | 
						|
								    size_type st.tb_defwant = st.tb_def + st.nb_want - st.nb_nolong;
							 | 
						|
								    
							 | 
						|
								    sub_interval SUBYB(0, st.conv);
							 | 
						|
								    
							 | 
						|
								    if ( st.tb_defwant >= p ) { // An invariant subspace has been found.
							 | 
						|
								      
							 | 
						|
								      st.nb_unwant = 0;
							 | 
						|
								      st.nb_want = p + st.nb_nolong - st.tb_def;
							 | 
						|
								      st.tb_defwant = p;
							 | 
						|
								      
							 | 
						|
								      if ( pure[st.conv - st.nb_want + 1] == 2 ) {
							 | 
						|
									++st.nb_want; st.tb_defwant = ++p;// il faudrait que ce soit un p local
							 | 
						|
								      }
							 | 
						|
								      
							 | 
						|
								      SUBYB = sub_interval(st.conv - st.nb_want, st.nb_want);
							 | 
						|
								      // YB = YB(:, st.conv-st.nb_want+1 : st.conv); // On laisse en suspend ..
							 | 
						|
								      // pure = pure(st.conv-st.nb_want+1 : st.conv,1); // On laisse suspend ..
							 | 
						|
								      st.conv = st.nb_want;
							 | 
						|
								      st.tb_deftot = st.tb_def + st.conv;
							 | 
						|
								      st.ok = true;
							 | 
						|
								    }
							 | 
						|
								    
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								  template<typename MAT, typename EVAL, typename PURE>
							 | 
						|
								  void select_eval_for_purging(const MAT &Hobl, EVAL &eval, MAT &YB,
							 | 
						|
											       PURE &pure, idgmres_state &st) {
							 | 
						|
								
							 | 
						|
								    typedef typename linalg_traits<MAT>::value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								    size_type m = st.m;
							 | 
						|
								
							 | 
						|
								    // Computation of the Ritz eigenpairs.
							 | 
						|
								    
							 | 
						|
								    col_matrix< std::vector<T> > evect(st.tb_deftot, st.tb_deftot);
							 | 
						|
								    
							 | 
						|
								    sub_interval SUB1(0, st.tb_deftot);
							 | 
						|
								    implicit_qr_algorithm(sub_matrix(Hobl, SUB1),
							 | 
						|
											  sub_vector(eval, SUB1), evect);
							 | 
						|
								    std::fill(eval.begin() + st.tb_deftot, eval.end(), std::complex<R>(0));
							 | 
						|
								    
							 | 
						|
								    std::vector< std::pair<T, size_type> > eval_sort(m);
							 | 
						|
								    for (size_type l = 0; l < m; ++l)
							 | 
						|
								      eval_sort[l] = std::pair<T, size_type>(eval[l], l);
							 | 
						|
								    std::sort(eval_sort.begin(), eval_sort.end(), compare_vp());
							 | 
						|
								
							 | 
						|
								    std::vector<bool> sorted(m);
							 | 
						|
								    std::fill(sorted.begin(), sorted.end(), false);
							 | 
						|
								    
							 | 
						|
								    std::vector<size_type> ind(m);
							 | 
						|
								    for (size_type l = 0; l < m; ++l) ind[l] = eval_sort[l].second;
							 | 
						|
								    
							 | 
						|
								    std::vector<bool> kept(m, false);
							 | 
						|
								    std::fill(kept.begin(), kept.begin()+st.tb_def, true);
							 | 
						|
								
							 | 
						|
								    apply_permutation(eval, ind);
							 | 
						|
								    apply_permutation(evect, ind);
							 | 
						|
								    
							 | 
						|
								    size_type j;
							 | 
						|
								    for (j = 0; j < st.tb_deftot; ++j) {
							 | 
						|
									  
							 | 
						|
								      for (size_type l = 0, l < st.tb_deftot; ++l)
							 | 
						|
									YB(l, j) = std::real(evect(l, j));
							 | 
						|
								      
							 | 
						|
								      if (std::imag(eval[j]) != R(0)) {
							 | 
						|
									for (size_type l = 0, l < m-st.tb_def; ++l)
							 | 
						|
									  YB(l, j+1) = std::imag(evect(l, j));
							 | 
						|
									pure[j] = 1;
							 | 
						|
									pure[j+1] = 2;
							 | 
						|
									
							 | 
						|
									j += 2;
							 | 
						|
								      }
							 | 
						|
								      else ++j;
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								  
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif
							 |