You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							263 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							263 lines
						
					
					
						
							10 KiB
						
					
					
				
								/* -*- c++ -*- (enables emacs c++ mode) */
							 | 
						|
								/*===========================================================================
							 | 
						|
								 
							 | 
						|
								 Copyright (C) 2002-2012 Yves Renard
							 | 
						|
								 
							 | 
						|
								 This file is a part of GETFEM++
							 | 
						|
								 
							 | 
						|
								 Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
							 | 
						|
								 under  the  terms  of the  GNU  Lesser General Public License as published
							 | 
						|
								 by  the  Free Software Foundation;  either version 3 of the License,  or
							 | 
						|
								 (at your option) any later version along with the GCC Runtime Library
							 | 
						|
								 Exception either version 3.1 or (at your option) any later version.
							 | 
						|
								 This program  is  distributed  in  the  hope  that it will be useful,  but
							 | 
						|
								 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
							 | 
						|
								 or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
							 | 
						|
								 License and GCC Runtime Library Exception for more details.
							 | 
						|
								 You  should  have received a copy of the GNU Lesser General Public License
							 | 
						|
								 along  with  this program;  if not, write to the Free Software Foundation,
							 | 
						|
								 Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
							 | 
						|
								 
							 | 
						|
								 As a special exception, you  may use  this file  as it is a part of a free
							 | 
						|
								 software  library  without  restriction.  Specifically,  if   other  files
							 | 
						|
								 instantiate  templates  or  use macros or inline functions from this file,
							 | 
						|
								 or  you compile this  file  and  link  it  with other files  to produce an
							 | 
						|
								 executable, this file  does  not  by itself cause the resulting executable
							 | 
						|
								 to be covered  by the GNU Lesser General Public License.  This   exception
							 | 
						|
								 does not  however  invalidate  any  other  reasons why the executable file
							 | 
						|
								 might be covered by the GNU Lesser General Public License.
							 | 
						|
								 
							 | 
						|
								===========================================================================*/
							 | 
						|
								
							 | 
						|
								// This file is a modified version of ilut.h from ITL.
							 | 
						|
								// See http://osl.iu.edu/research/itl/
							 | 
						|
								// Following the corresponding Copyright notice.
							 | 
						|
								//===========================================================================
							 | 
						|
								//
							 | 
						|
								// Copyright (c) 1998-2001, University of Notre Dame. All rights reserved.
							 | 
						|
								// Redistribution and use in source and binary forms, with or without
							 | 
						|
								// modification, are permitted provided that the following conditions are met:
							 | 
						|
								//
							 | 
						|
								//    * Redistributions of source code must retain the above copyright
							 | 
						|
								//      notice, this list of conditions and the following disclaimer.
							 | 
						|
								//    * Redistributions in binary form must reproduce the above copyright
							 | 
						|
								//      notice, this list of conditions and the following disclaimer in the
							 | 
						|
								//      documentation and/or other materials provided with the distribution.
							 | 
						|
								//    * Neither the name of the University of Notre Dame nor the
							 | 
						|
								//      names of its contributors may be used to endorse or promote products
							 | 
						|
								//      derived from this software without specific prior written permission.
							 | 
						|
								//
							 | 
						|
								// THIS SOFTWARE  IS  PROVIDED  BY  THE TRUSTEES  OF  INDIANA UNIVERSITY  AND
							 | 
						|
								// CONTRIBUTORS  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,
							 | 
						|
								// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  FITNESS
							 | 
						|
								// FOR  A PARTICULAR PURPOSE ARE DISCLAIMED. IN  NO  EVENT SHALL THE TRUSTEES
							 | 
						|
								// OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
							 | 
						|
								// INCIDENTAL, SPECIAL, EXEMPLARY,  OR CONSEQUENTIAL DAMAGES (INCLUDING,  BUT
							 | 
						|
								// NOT  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
							 | 
						|
								// DATA,  OR PROFITS;  OR BUSINESS  INTERRUPTION)  HOWEVER  CAUSED AND ON ANY
							 | 
						|
								// THEORY  OF  LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY, OR TORT
							 | 
						|
								// (INCLUDING  NEGLIGENCE  OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
							 | 
						|
								// THIS  SOFTWARE,  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
							 | 
						|
								//
							 | 
						|
								//===========================================================================
							 | 
						|
								
							 | 
						|
								#ifndef GMM_PRECOND_ILUT_H
							 | 
						|
								#define GMM_PRECOND_ILUT_H
							 | 
						|
								
							 | 
						|
								/**@file gmm_precond_ilut.h
							 | 
						|
								   @author  Andrew Lumsdaine <lums@osl.iu.edu>, Lie-Quan Lee <llee@osl.iu.edu>
							 | 
						|
								   @date June 5, 2003.
							 | 
						|
								   @brief ILUT:  Incomplete LU with threshold and K fill-in Preconditioner.
							 | 
						|
								*/
							 | 
						|
								
							 | 
						|
								/*
							 | 
						|
								  Performane comparing for SSOR, ILU and ILUT based on sherman 5 matrix 
							 | 
						|
								  in Harwell-Boeing collection on Sun Ultra 30 UPA/PCI (UltraSPARC-II 296MHz)
							 | 
						|
								  Preconditioner & Factorization time  &  Number of Iteration \\ \hline
							 | 
						|
								  SSOR        &   0.010577  & 41 \\
							 | 
						|
								  ILU         &   0.019336  & 32 \\
							 | 
						|
								  ILUT with 0 fill-in and threshold of 1.0e-6 & 0.343612 &  23 \\
							 | 
						|
								  ILUT with 5 fill-in and threshold of 1.0e-6 & 0.343612 &  18 \\ \hline
							 | 
						|
								*/
							 | 
						|
								
							 | 
						|
								#include "gmm_precond.h"
							 | 
						|
								
							 | 
						|
								namespace gmm {
							 | 
						|
								
							 | 
						|
								  template<typename T> struct elt_rsvector_value_less_ {
							 | 
						|
								    inline bool operator()(const elt_rsvector_<T>& a, 
							 | 
						|
											   const elt_rsvector_<T>& b) const
							 | 
						|
								    { return (gmm::abs(a.e) > gmm::abs(b.e)); }
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								  /** Incomplete LU with threshold and K fill-in Preconditioner.
							 | 
						|
								
							 | 
						|
								  The algorithm of ILUT(A, 0, 1.0e-6) is slower than ILU(A). If No
							 | 
						|
								  fill-in is arrowed, you can use ILU instead of ILUT.
							 | 
						|
								
							 | 
						|
								  Notes: The idea under a concrete Preconditioner such as ilut is to
							 | 
						|
								  create a Preconditioner object to use in iterative methods.
							 | 
						|
								  */
							 | 
						|
								  template <typename Matrix>
							 | 
						|
								  class ilut_precond  {
							 | 
						|
								  public :
							 | 
						|
								    typedef typename linalg_traits<Matrix>::value_type value_type;
							 | 
						|
								    typedef wsvector<value_type> _wsvector;
							 | 
						|
								    typedef rsvector<value_type> _rsvector;
							 | 
						|
								    typedef row_matrix<_rsvector> LU_Matrix;
							 | 
						|
								
							 | 
						|
								    bool invert;
							 | 
						|
								    LU_Matrix L, U;
							 | 
						|
								
							 | 
						|
								  protected:
							 | 
						|
								    size_type K;
							 | 
						|
								    double eps;    
							 | 
						|
								
							 | 
						|
								    template<typename M> void do_ilut(const M&, row_major);
							 | 
						|
								    void do_ilut(const Matrix&, col_major);
							 | 
						|
								
							 | 
						|
								  public:
							 | 
						|
								    void build_with(const Matrix& A, int k_ = -1, double eps_ = double(-1)) {
							 | 
						|
								      if (k_ >= 0) K = k_;
							 | 
						|
								      if (eps_ >= double(0)) eps = eps_;
							 | 
						|
								      invert = false;
							 | 
						|
								      gmm::resize(L, mat_nrows(A), mat_ncols(A));
							 | 
						|
								      gmm::resize(U, mat_nrows(A), mat_ncols(A));
							 | 
						|
								      do_ilut(A, typename principal_orientation_type<typename
							 | 
						|
									      linalg_traits<Matrix>::sub_orientation>::potype());
							 | 
						|
								    }
							 | 
						|
								    ilut_precond(const Matrix& A, int k_, double eps_) 
							 | 
						|
								      : L(mat_nrows(A), mat_ncols(A)), U(mat_nrows(A), mat_ncols(A)),
							 | 
						|
									K(k_), eps(eps_) { build_with(A); }
							 | 
						|
								    ilut_precond(size_type k_, double eps_) :  K(k_), eps(eps_) {}
							 | 
						|
								    ilut_precond(void) { K = 10; eps = 1E-7; }
							 | 
						|
								    size_type memsize() const { 
							 | 
						|
								      return sizeof(*this) + (nnz(U)+nnz(L))*sizeof(value_type);
							 | 
						|
								    }
							 | 
						|
								  };
							 | 
						|
								
							 | 
						|
								  template<typename Matrix> template<typename M> 
							 | 
						|
								  void ilut_precond<Matrix>::do_ilut(const M& A, row_major) {
							 | 
						|
								    typedef value_type T;
							 | 
						|
								    typedef typename number_traits<T>::magnitude_type R;
							 | 
						|
								    
							 | 
						|
								    size_type n = mat_nrows(A);
							 | 
						|
								    if (n == 0) return;
							 | 
						|
								    std::vector<T> indiag(n);
							 | 
						|
								    _wsvector w(mat_ncols(A));
							 | 
						|
								    _rsvector ww(mat_ncols(A)), wL(mat_ncols(A)), wU(mat_ncols(A));
							 | 
						|
								    T tmp;
							 | 
						|
								    gmm::clear(U); gmm::clear(L);
							 | 
						|
								    R prec = default_tol(R()); 
							 | 
						|
								    R max_pivot = gmm::abs(A(0,0)) * prec;
							 | 
						|
								
							 | 
						|
								    for (size_type i = 0; i < n; ++i) {
							 | 
						|
								      gmm::copy(mat_const_row(A, i), w);
							 | 
						|
								      double norm_row = gmm::vect_norm2(w);
							 | 
						|
								
							 | 
						|
								      typename _wsvector::iterator wkold = w.end();
							 | 
						|
								      for (typename _wsvector::iterator wk = w.begin();
							 | 
						|
									   wk != w.end() && wk->first < i; ) {
							 | 
						|
									size_type k = wk->first;
							 | 
						|
									tmp = (wk->second) * indiag[k];
							 | 
						|
									if (gmm::abs(tmp) < eps * norm_row) w.erase(k);
							 | 
						|
									else { wk->second += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); }
							 | 
						|
									if (wkold == w.end()) wk = w.begin(); else { wk = wkold; ++wk; }
							 | 
						|
									if (wk != w.end() && wk->first == k)
							 | 
						|
									  { if (wkold == w.end()) wkold = w.begin(); else ++wkold; ++wk; }
							 | 
						|
								      }
							 | 
						|
								      tmp = w[i];
							 | 
						|
								
							 | 
						|
								      if (gmm::abs(tmp) <= max_pivot) {
							 | 
						|
									GMM_WARNING2("pivot " << i << " too small. try with ilutp ?");
							 | 
						|
									w[i] = tmp = T(1);
							 | 
						|
								      }
							 | 
						|
								
							 | 
						|
								      max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1)));
							 | 
						|
								      indiag[i] = T(1) / tmp;
							 | 
						|
								      gmm::clean(w, eps * norm_row);
							 | 
						|
								      gmm::copy(w, ww);
							 | 
						|
								      std::sort(ww.begin(), ww.end(), elt_rsvector_value_less_<T>());
							 | 
						|
								      typename _rsvector::const_iterator wit = ww.begin(), wite = ww.end();
							 | 
						|
								
							 | 
						|
								      size_type nnl = 0, nnu = 0;    
							 | 
						|
								      wL.base_resize(K); wU.base_resize(K+1);
							 | 
						|
								      typename _rsvector::iterator witL = wL.begin(), witU = wU.begin();
							 | 
						|
								      for (; wit != wite; ++wit) 
							 | 
						|
									if (wit->c < i) { if (nnl < K) { *witL++ = *wit; ++nnl; } }
							 | 
						|
									else { if (nnu < K  || wit->c == i) { *witU++ = *wit; ++nnu; } }
							 | 
						|
								      wL.base_resize(nnl); wU.base_resize(nnu);
							 | 
						|
								      std::sort(wL.begin(), wL.end());
							 | 
						|
								      std::sort(wU.begin(), wU.end());
							 | 
						|
								      gmm::copy(wL, L.row(i));
							 | 
						|
								      gmm::copy(wU, U.row(i));
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template<typename Matrix> 
							 | 
						|
								  void ilut_precond<Matrix>::do_ilut(const Matrix& A, col_major) {
							 | 
						|
								    do_ilut(gmm::transposed(A), row_major());
							 | 
						|
								    invert = true;
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    gmm::copy(v1, v2);
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      gmm::lower_tri_solve(P.L, v2, true);
							 | 
						|
								      gmm::upper_tri_solve(P.U, v2, false);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_mult(const ilut_precond<Matrix>& P,const V1 &v1,V2 &v2) {
							 | 
						|
								    gmm::copy(v1, v2);
							 | 
						|
								    if (P.invert) {
							 | 
						|
								      gmm::lower_tri_solve(P.L, v2, true);
							 | 
						|
								      gmm::upper_tri_solve(P.U, v2, false);
							 | 
						|
								    }
							 | 
						|
								    else {
							 | 
						|
								      gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								      gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    }
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void left_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    if (P.invert) gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								    else gmm::lower_tri_solve(P.L, v2, true);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void right_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    if (P.invert) gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								    else gmm::upper_tri_solve(P.U, v2, false);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_left_mult(const ilut_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											    V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    if (P.invert) gmm::upper_tri_solve(P.U, v2, false);
							 | 
						|
								    else gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								  template <typename Matrix, typename V1, typename V2> inline
							 | 
						|
								  void transposed_right_mult(const ilut_precond<Matrix>& P, const V1 &v1,
							 | 
						|
											     V2 &v2) {
							 | 
						|
								    copy(v1, v2);
							 | 
						|
								    if (P.invert) gmm::lower_tri_solve(P.L, v2, true);
							 | 
						|
								    else gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
							 | 
						|
								  }
							 | 
						|
								
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#endif 
							 | 
						|
								
							 |